International Journal of Theoretical Physics

, Volume 40, Issue 8, pp 1511–1523 | Cite as

Finslerian N-Spinors: Algebra

  • A. V. Solov'yov
  • Yu. S. Vladimirov
Article

Abstract

New mathematical objects called Finslerian N-spinors are discussed. The Finslerian N-spinor algebra is developed. It is found that Finslerian N-spinors are associated with an N2-dimensional flat Finslerian space. A generalization of the epimorphism SL(2, ℂ) → O+(1, 3) to a case of the group SL(N,ℂ) is constructed. Particular examples of Finslerian N-spinors for N = 2, 3 are considered in detail.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Brauer, R. and Weyl, H. (1935). Spinors in n dimensions, American Journal of Mathematics 57, 425.Google Scholar
  2. Cartan, É. (1913). Les groupes projectifs, qui ne laissent invariante aucune multiplicité plane, Bulletin de la SocéetéMathématique de France 41, 53.Google Scholar
  3. Dirac, P. A. M. (1928). The quantum theory of the electron, Proceedings of the Royal Society (London) A117, 610.Google Scholar
  4. Finkelstein, D. (1986). Hyperspin and hyperspace, Physical Review Letters 56, 1532.Google Scholar
  5. Finkelstein, D., Finkelstein, S. R., and Holm, C. (1986). Hyperspin Manifolds, International Journal of Theoretical Physics 25, 441.Google Scholar
  6. Majorana, E. (1937). Teoria simmetrica dell'elettrone e del positrone, Nuovo Cimento 14, 171.Google Scholar
  7. Pauli, W. (1927). Zur Quantenmechanik des magnetischen Elektrons, Zeitschrift für Physik 43, 601.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • A. V. Solov'yov
    • 1
  • Yu. S. Vladimirov
    • 1
  1. 1.Division of Theoretical Physics, Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations