Foundations of Physics

, Volume 31, Issue 4, pp 593–612 | Cite as

Beyond Quantum Mechanics: Insights from the Work of Martin Gutzwiller

  • Daniel Kleppner
  • John B. Delos
Article

Abstract

A complete quantum solution provides all possible knowledge of a system, whereas semiclassical theory provides at best approximate solutions in a limited region. Nevertheless, semiclassical methods based on the work of Martin Gutzwiller can provide stunning physical insights in regimes where quantum solutions are opaque. Furthermore, they can provide a unique bridge between the quantum and classical worlds. We illustrate these ideas with an account of a theoretical and experimental attack on the paradigm problem of the hydrogen atom in strong magnetic and electric fields.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    M. C. Gutzwiller, J. Math. Phys. 12, 343 (1971); Chaos in Classical and Quantum Mechanics (Springer, New York, 1990).Google Scholar
  2. 2.
    M. L. Zimmerman, M. G. Littman, M. M. Kash, and D. Kleppner, Phys. Rev. A. 20, 225l (1979).Google Scholar
  3. 3.
    T. F. Gallagher, Rydberg Atoms (Cambridge University Press, 1994).Google Scholar
  4. 4.
    W. R. S. Garton and F. S. Tomkins, Astrophys. J. 158, 839 (1969).Google Scholar
  5. 5.
    C. Iu, G. R. Welch. M. M. Kash, D. Kleppner, D. Delande, and J.-C. Gay, Phys. Rev. Lett. 66, 145 (1991).Google Scholar
  6. 6.
    A. Holle, G. Wiebusch, J. Main, H. Rottke, and K. H. Welge, Phys. Rev. Lett. 61, 161 (1988).Google Scholar
  7. 7.
    A. Holle, J. Main, G. Wiebusch, H. Ratch, and K. H. Welge, Phys. Rev. Lett. 61, 161 (1988).Google Scholar
  8. 8.
    T. Hankins, Sir William Rowan Hamilton (Johns Hopkins University Press, 1980).Google Scholar
  9. 9.
    J. Mehra and H. Rechenberg, The Historical Development of Quantum Theory, Vol. 5, Part 2 (Springer, New York, 1987), p. 420.Google Scholar
  10. 10.
    A. Messiah, Quantum Mechanics, Vol. 1 (North-Holland, Amsterdam, 1964), Chap. VI. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon, 1965), Chap. VII.Google Scholar
  11. 11.
    K. W. Ford and J. A. Wheeler, Ann. Phys. (N.Y.) 7, 259, 287 (1959).Google Scholar
  12. 12.
    R. B. Bernstein, in Molecular Beams, J. Ross, ed., Advances in Chemical Physics, Vol. X (Interscience, 1966).Google Scholar
  13. 13.
    W. H. Miller, J. Chem. Phys. 53, 1949, 3578 (1970). W. H. Miller and T. F. George, J. Chem. Phys. 56, 5668 (1972). R. A. Marcus, J. Chem. Phys. 54, 3965 (1971). J. N. L. Connor and R. A. Marcus, J. Chem. Phys. 55, 5636 (1971). D. W. Noid and R. A. Marcus, J. Chem. Phys. 62, 2119 (1975).Google Scholar
  14. 14.
    V. P. Maslov and M. V. Fedoriuk, Semiclassical Approximation in Quantum Mechanics (Reidel, Dordrecht, 1981).Google Scholar
  15. 15.
    I. C. Percival, J. Phys. 6, L229 (1973); Adv. Chem. Phys. 36, 1 (1977). A. Einstein, Verh. Dtsch. Phys. Ges. 19, 82 (1917).Google Scholar
  16. 16.
    D. Kleppner, M. G. Littman, and M. L. Zimmerman, Sci. American (May 1981), p. 130.Google Scholar
  17. 17.
    M. V. Berry and M. Tabor, Proc. Roy. Soc. (London) a349, 101 (1976).Google Scholar
  18. 18.
    Derivation of Closed-Orbit Theory: M. L. Du and J. B. Delos, Phys. Rev. Lett. 58, 1731 (1987); Phys. Rev. A 38, 1896, 1913 (1988). See also E. G. Bogomolnyi, Sov. Phys. JETP 69, 275 (1989), and D. Wintgen and H. Friedrich, Phys. Rev. A 36, 131 (1987). J. M. Mao, J. Shaw, and J. B. Delos, J. Stat. Phys. 68, 51 (1992).Google Scholar
  19. 19.
    Recurrence Spectroscopy—Magnetic Fields: J. Main, G. Weibusch, K. Welge, J. Shaw, and J. B. Delos, Phys. Rev. A 49, 847 (1994). Parallel Electric and Magnetic Fields: J. M. Mao, K. A. Rapelje, S. J. Blodgett-Ford, J. B. Delos, A. Konig, and H. Rinneberg, Phys. Rev. A 48, 2117 (1993). Electric Fields: J. Gao, J. B. Delos, and M. Baruch, Phys. Rev. A 46, 1449 (1992). J. Gao and J. B. Delos, Phys. Rev. A 56, 356 (1997). Crossed Electric and Magnetic Fields: C. Neumann, R. Ubert, S. Freund, B. Sheehy, K. H. Welge, M. R. Haggerty, and J. B. Delos, Phys. Rev. Lett. 78, 4705 (1997). A. D. Peters and J. B. Delos, Phys. Rev. A 47, 3036 (1993).Google Scholar
  20. 20.
    Bifurcation Theory for Closed Orbits: K. R. Meyer, J. B. Delos, and J. M. Mao, in Conservative Systems and Quantum Chaos, L. M. Bates and D. L. Rod, eds., Fields Institute Communications 8, 93 (1996) (Am. Math. Soc.). D. A. Sadovskii and J. B. Delos, Phys. Rev. E 54, 2033 (1996). D. A. Sadovskii, J. A. Shaw, and J. B. Delos, Phys. Rev. Lett. 75, 2120 (1995). J. M. Mao and J. B. Delos, Phys. Rev. A 45, 1746 (1992).Google Scholar
  21. 21.
    Quantum Manifestations of Bifurcations: T. Bartsch, J. Main, and G. Wunner, Ann. Phys. (San Diego)) 277, 19 (1999). K. Weibert, J. Main, and G. Wunner, Ann. Phys. (San Diego) 268, 172 (1998). J. Main and G. Wunner, Phys. Rev. E 57, 7325 (1998); Phys. Rev. A 55, 1743 (1997). A. D. Peters, C. Jaffe, J. Gao, and J. B. Delos, Phys. Rev. A 56, 345 (1997). A. D. Peters, C. Jaffe, and J. B. Delos, Phys. Rev. A 56, 331 (1997). A. D. Peters, C. Jaffe, and J. B. Delos, Phys. Rev. Lett. 73, 2825 (1994).Google Scholar
  22. 22.
    Scattering from the Ion Core and Combination Orbits: S. M. Owen, T. S. Monteiro, and P. A. Dando, Phys. Rev. E 62, 6388 (2000). P. A. Dando, T. S. Monteiro, and S. M. Owen, Phys. Rev. Lett. 80, 2797 (1998). J. A. Shaw and F. Robicheaux, Phys. Rev. A 58, 3561 (1998). B. Hupper, J. Main, and G. Wunner, Phys. Rev. Lett. 74, 2650 (1995). P. A. Dando, T. S. Monteiro, D. Delande, and K. T. Taylor, Phys. Rev. A 54, 127 (1996); Phys. Rev. Lett. 74, 1099 (1995). J. Gao and J. B. Delos, Phys. Rev. A 46, 1455 (1992); see also Ref. 26.Google Scholar
  23. 23.
    Orbits in a Node of a Quantum Wave Function: J. A. Shaw and F. Robicheaux, Phys. Rev. A 60, 1728 (1999). J. Main, Phys. Rev. A 60, 1726 (1999). F. Robicheaux and J. A. Shaw, Phys. Rev. A 58, 1043 (1998). J. A. Shaw, J. B. Delos, M. Courtney, and D. Kleppner, Phys. Rev. A 49, 847 (1994).Google Scholar
  24. 24.
    Time-Dependent Theory: M. R. Haggerty and J. B. Delos, Phys. Rev. A 61, 53406 (2000); see also Ref. 28.Google Scholar
  25. 25.
    Harmonic Inversion: J. Main, V. A. Mandelshtam, and H. S. Taylor, Phys. Rev. Lett. 78, 4351 (1997); 79, 825 (1997).Google Scholar
  26. 26.
    M. Courtney, H. Jiao, N. Spellmeyer, and D. Kleppner, Phys. Rev. Lett. 73, 1340 (1994).Google Scholar
  27. 27.
    M. N. Wise and D. C. Brock, Stud. Hist. Phil. Mod. Phys. 29, 369 (1998).Google Scholar
  28. 28.
    M. R. Haggerty, N. Spellmeyer, J. B. Delos, and D. Kleppner, Phys. Rev. Lett. 81, 1592 (1998).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Daniel Kleppner
    • 1
  • John B. Delos
    • 2
  1. 1.Department of PhysicsMassachusetts Institute of TechnologyCambridge
  2. 2.Department of PhysicsCollege of William and MaryWilliamsburg

Personalised recommendations