Skip to main content
Log in

Rate effects on the delamination fracture of multidirectional carbon-fiber/epoxy composites under mode I loading

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The present study has shown the experimental results for characterization of the mode I delamination fracture of continuous carbon fiber/epoxy multidirectional composites under a wide range of test rates, up to high rates of 11.4 m/s. At the slow rates of test ≤1.0 × 10−1 m/s the delamination fracture energy showed a rising “R-curve”, a strong function of the length of propagating crack due to the large extent of crack jumping and following fiber bridging. At the high rates of test ≥1.0 m/s any loads recorded by the load cell were largely obscured by such dynamic effects as “spring-mass” oscillations and flexural wave reflections. In this respect, Equation 11, requiring the values of the actual arm displacement and flexural (axial) modulus, was better for the deduction of G IC. However the maximum value of G IC so obtained was considerably underestimated. By increasing the rate up to 1.0 × 10−1 m/s, there were little differences in the delamination fracture behaviors, whereas at high rates >1.0 m/s the maximum values of G IC decreased considerably. In the case of a short initial crack length, however, the maximum values largely increased at a rate of 11.4 m/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Hunston, R. J. Moulton, N. J. Johnston and W. D. Bascom, in “Matrix effects in Composite Delamination: Mode I Fracture Aspects,” Toughened Composites, edited by N. L. Johnston, ASTM STP 937 (1987) p. 74.

  2. W. L. Bradley, “Relationship of Matrix Toughness to Interlaminar Fracture Toughness,” Application of Fracture Mechanics to Composite Materials, edited by K. Friedrich, Composite Materials Series Vol. 6 (Elsevier Science Publishers, 1989) p. 159.

  3. X. N. Huang and D. Hull, Comp. Sci. Tech. 35 (1989) 283.

    Google Scholar 

  4. P. Davies, C. Moulin, H. H. Kausch and M. Fischer, ibid. 39 (1990) 193.

    Google Scholar 

  5. S. Hashemi, A. J. Kinloch and J.G. Williams, Proc Royal Soc. London A427 (1990) 173.

    Google Scholar 

  6. Idem., J. Comp. Mater. 24 (1990) 918.

    Google Scholar 

  7. J.G. Williams, ibid. 21 (1987) 330.

    Google Scholar 

  8. L. A. Carlsson and J.W. Gillespie, Jr., “Mode II Interlaminar Fracture of Composites,” Application of Fracture Mechanics to Composite Materials, edited by K. Friedrich, Composite Materials Series Vol. 6 (Elsevier Science Publishers, 1989) p. 113.

  9. Y. Wang and J.G. Williams, Comp. Sci. Tech. 43 (1992) 251.

    Google Scholar 

  10. C. Corleto and W. L. Bradley, “Mixed Mode Fracture in Fibre-Polymer Composite Laminates,” Composite Materials: Fatigue and Fracture, edited by T. K. O'Brien, ASTM STP1110 (1991) p. 143.

  11. J.J. Ploaha, B. D. Davidson, R. C. Hudson and A. Pieracci, J. Reinf. Plastics Comp. 15 (1996) 141.

    Google Scholar 

  12. D. J. Nicholls and J.P. Gallagher, ibid. 2 (1983) 2.

    Google Scholar 

  13. H. Chai, Composites 15 (1984) 277.

    Google Scholar 

  14. P. Robinson and D. Q. Song, J. Comp. Mater. 26 (1992) 1554.

    Google Scholar 

  15. N. S. Choi, A. J. Kinloch and J.G. Williams, ibid. 33 (1999) 73.

    Google Scholar 

  16. A. J. Smiley and R. B. Pipes, ibid. 21 (1987) 670.

    Google Scholar 

  17. PH. Beguelin, M. Barbezat and H. H. Kausch, Journal de Physique III France 1 (1991) 1867.

    Google Scholar 

  18. G. Yaniv and I.M. Daniel, “Hight-Tapered Double Cantelever Beam Specimen for Study of Rate Effects on Fracture Toughness of Composites,” Composite Materials: Testing and Design ASTM STP 972, edited by J. D. Whitcomb, Philadelphia (1988) p. 241.

  19. A. A. Aliyu and I.M. Daniel, “Effects of Strain Rate on Delamination Fracture Toughness of Graphite/Epoxy,” Delamination and Bonding of Materials, ASTM STP 876, edited by W. S. Johnson, Philadelphia (1985) p. 336.

  20. B. R. K. Blackman, J.P. Dear, A. J. Kinloch, H. Macgillivray, Y. Wang, J.G. Williams and P. Yayla, J. Mater. Sci. 30 (1995) 5885.

    Google Scholar 

  21. B. R. K. Blackman, A. J. Kinloch, Y. Wang and J.G. Williams, ibid. 30 (1996) 4451.

    Google Scholar 

  22. L. Yongning, Z. Jinghau and Z. Huijui, Eng. Frac. Mech. 39 (1991) 955.

    Google Scholar 

  23. J. Harding, “The Effect of High Strain Rate on Material Properties,” in Materials at High Strain Rates, edited by T. Z. Blazynski (Elsevier Applied Science, London, 1987) p. 133.

    Google Scholar 

  24. H. Kolsky, “Stress Waves in Solids” (Constable Dover Publications, New York, USA, 1963).

    Google Scholar 

  25. J.G. Williams, “Fracture Mechanics of Polymers” (Ellis Horwood Ltd, Chichester, UK, 1987) p. 237.

    Google Scholar 

  26. Y. Wang and J.G. Williams, Composites 25 (1994) 323.

    Google Scholar 

  27. ASTM, “Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites,” D5528-94a (1994).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, N.S. Rate effects on the delamination fracture of multidirectional carbon-fiber/epoxy composites under mode I loading. Journal of Materials Science 36, 2257–2270 (2001). https://doi.org/10.1023/A:1017512605105

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017512605105

Keywords

Navigation