Journal of Theoretical Probability

, Volume 14, Issue 3, pp 899–926 | Cite as

Chutes and Ladders in Markov Chains

  • Persi Diaconis
  • Rick Durrett


We investigate how the stationary distribution of a Markov chain changes when transitions from a single state are modified. In particular, adding a single directed edge to nearest neighbor random walk on a finite discrete torus in dimensions one, two, or three changes the stationary distribution linearly, logarithmically, or only locally. Related results are derived for birth and death chains approximating Bessel diffusions and for random walk on the Sierpinski gasket.

Markov chains stationary distribution Bessel diffusions Sierspinski gasket 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barlow, M. T., and Perkins, E. A. (1988). Brownian motion on the Sierpinski gasket. Probb. Th. Rel. Fields. 79, 543–623.Google Scholar
  2. 2.
    Diaconis, P., and Saloff-Coste, L. (1996). Nashinequalities for finite Markov chains. J. Theoret. Prob. 9, 459–510.Google Scholar
  3. 3.
    Durrett, R. (1995). Probability: Theory andExamples, 2nd ed., Duxbury Press, Belmont, California.Google Scholar
  4. 4.
    Durrett, R. (1996). Stochastic Calculus, CRC Press, Boca Raton, Florida.Google Scholar
  5. 5.
    Lindstrom, T. (1990). Brownian motion on nested fractals. Memoirs of the A.M.S. 420.Google Scholar
  6. 6.
    Wilmer, E. (1999). Exact rates of convergence for some simple non-reversible Markov chains, Ph.D. thesis, Dept. of Mathematics, Harvard University.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Persi Diaconis
    • 1
  • Rick Durrett
    • 2
  1. 1.Department of StatisticsStanford UniversityStanford
  2. 2.Department of MathematicsCornell UniversityIthaca

Personalised recommendations