Journal of Indian Philosophy

, Volume 29, Issue 1–2, pp 43–80 | Cite as

Pānini and Euclid: Reflections on Indian Geometry*

  • Johannes Bronkhorst


Indian Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ascher, Marcia (1991). Ethnomathematics. Chapman & Hall. (I have only had access to the French translation: Ascher, 1998.)Google Scholar
  2. Ascher, Marcia (1998). Mathématiques d'ailleurs. Nombres, formes et jeux dans les sociétés traditionnelles. Traduction de l'anglais (États-Unis) et postface de Karine Chemla et Serge Pahaut. Paris: Éditions du Seuil. (French translation of Ascher, 1991.)Google Scholar
  3. Ascher, M., and R. Ascher (1994). ‘Ethnomathematics’ = Grattan-Guinness, 1994: II: 1545–1554.Google Scholar
  4. Billard, Roger (1971). L'astronomie indienne. Investigation des textes sanskrits et des données numériques. Paris: Adrien-Maisonneuve. (PEFEO, 83.)Google Scholar
  5. Bronkhorst, Johannes (1990). ‘Vārttika’, WZKS 34: 123–146.Google Scholar
  6. Bronkhorst, Johannes (1999). Why is There Philosophy in India? Amsterdam: Royal Netherlands Academy of Arts and Sciences. 1999. (Sixth Gonda lecture, held on 13 November 1998 on the premises of the Royal Netherlands Academy of Arts and Sciences.)Google Scholar
  7. Bronkhorst, Johannes (forthcoming). ‘The Relationship Between Linguistics and Other Sciences in India’, History of the Language Sciences. Ed. Kees Versteegh.Google Scholar
  8. Bronkhorst, Johannes (forthcoming2). ‘The Cāndra-vyākaran. a: Some Questions’, Festschrift Cardona.Google Scholar
  9. Chattopadhyaya, Debiprasad (ed.) (1992). Studies in the History of Science in India. Vol. 2. New Delhi: Asha Jyoti.Google Scholar
  10. Chemla, Karine (1997). ‘What is at Stake in Mathematical Proofs from Third-century China?’ Science in Context 10(2): 227–251.Google Scholar
  11. Chemla, Karine (1999). ‘Philosophical Reflections in Chinese Ancient Mathematical Texts: Liu Hui's Reference to the Yijing’, in Sik Kim Yung and Francesca Bray (eds.), Current Perspectives in the History of Science in East Asia, pp. 89–100. Seoul: Seoul National University Press.Google Scholar
  12. Clark, Walter Eugene (1930). The Āryabhatīya of Āryabhata. An Ancient Indian Work on Mathematics and Astronomy. Translated with Notes. Chicago: The University of Chicago Press.Google Scholar
  13. Colebrooke, Henry Thomas (1817). Algebra, with Arithmetic and Mensuration, from the Sanscrit of Brahmegupta and Bháscara. London: John Murray.Google Scholar
  14. Collins, Randall (1998). The Sociology of Philosophies. A Global Theory of Intellectual Change. Cambridge, Massachusetts, and London, England: The Belknap Press of Harvard University Press.Google Scholar
  15. Cort, John E. (1999). ‘Fistfights in the Monastery: Calendars, Conflict and Karma Among the Jains’, in N.K. Wagle and Olle Qvarnström (eds.), Approaches to Jaina Studies: Philosophy, Logic, Rituals and Symbols, pp. 36–59. Toronto: Centre for South Asian Studies, University of Toronto. (South Asian Studies Papers, no. 11.)Google Scholar
  16. Datta, B. B. (1929). ‘The Mathematical Achievements of the Jainas’, Bulletin of the Calcutta Mathematical Society: 115–145. Reprinted in Chattopadhyaya, 1992: II: 684-716 (references are to the reprint).Google Scholar
  17. Davis, Philip J. and Reuben Hersh (1981). The Mathematical Experience. Boston etc.: Birkhäuser.Google Scholar
  18. Duncan, David Ewing (1998). The Calendar. The 5000-year Struggle to Align the Clock and the Heavens-and What Happened to the Missing Ten Days. Reprint: London: Fourth Estate, 1999.Google Scholar
  19. Elfering, Kurt (1968). ‘Ñber den Flächen bzw. Rauminhalt von Dreieck und Pyramide sowie Kreis und Kugel bei Āryabhat.a I’, Rechenpfenninge. Festschrift für Kurt Vogel, pp. 57–67. München (not seen).Google Scholar
  20. Elfering, Kurt (1975). Die Mathematik des Āryabhat.a I. Text,Ñbersetzung aus dem Sanskrit und Kommentar. München: Wilhelm Fink.Google Scholar
  21. Elfering, Kurt (1977). ‘The Area of a Triangle and the Volume of a Pyramid as Well as the Area of a Circle and the Surface of the Hemisphere in the Mathematics of Āryabhat.a I’, Indian Journal of the History of Science 12: 232–236 (not seen).Google Scholar
  22. Engelfriet, Peter M. (1998). Euclid in China. The Genesis of the First Chinese Translation of Euclid's Elements Books I-VI (Jihe Yuanben; Beijing, 1607) and its Reception up to 1723. Leiden etc.: Brill. (Sinica Leidensia, 40.)Google Scholar
  23. Filliozat, Pierre-Sylvain (1988). ‘Calculs de demi-cordes d'arcs par Āryabhat.a et Bhāskara I’, BEI 6: 255–274.Google Scholar
  24. Filliozat, Pierre-Sylvain (1995). ‘Sanskrit Linguistics and Mathematics in Ancient India’, Indian Horizons 44(4): 39–50.Google Scholar
  25. Filliozat, Pierre-Sylvain, and Guy Mazars (1985). ‘Observations sur la formule du volume de la pyramide et de la sphère chez Āryabhat.a’, BEI 3, 37–48.Google Scholar
  26. Franco, Eli (2000). ‘The Spitzer Manuscript-report on Work in Progress’, edited by the Committee for the Felicitation of Professor Doctor Junsho Kato's Sixtieth Birthday, Abhidharma and Indian Thought. Essays in Honor of Professor Doctor Junsho Kato on his Sixtieth Birthday, pp. 562–544. Nagoya. Tokyo: Shunju-sha. (= [49]-[67]).Google Scholar
  27. Friberg, J. (1990). ‘Mathematik’, Reallexikon der Assyriologie und vorderasiatischen Archäologie VII.7/8: 531–585.Google Scholar
  28. Gillings, Richard J. (1972). Mathematics in the Time of the Pharaohs. Cambridge, Massachusettes & London, England: MIT Press.Google Scholar
  29. Grattan-Guinness, I. (ed.) (1994). Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences. 2 vols. London and New York: Routledge.Google Scholar
  30. Hayashi, Takao (1994). 'Indian Mathematics’, = Grattan-Guinness, 1994: I: 118–130.Google Scholar
  31. Hayashi, Takao (1995). The Bhakshālī Manuscript. An Ancient Indian Mathematical Treatise. Groningen: Egbert Forsten. (Groningen Oriental Studies, 11.)Google Scholar
  32. Hayashi, Takao (1997). ‘Calculations of the Surface of a Sphere in India’, The Science and Engineering Review of Doshisha University 37(4): 194–238.Google Scholar
  33. Heath, T. (1921). History of Greek Mathematics. 2 vols. Reprint: New York: Dover Publications, 1981.Google Scholar
  34. Heilbron, J.L. (1999). The Sun in the Church. Cathedrals as Solar Observatories. Cambridge, Mass. & London, England: Harvard University Press.Google Scholar
  35. Huff, Toby E. (1993). The Rise of Early Modern Science: Islam, China and the West. Cambridge etc.: Cambridge University Press.Google Scholar
  36. Ingalls, Daniel H.H. (1954). ‘The Comparison of Indian and Western Philosophy’, JORM 22: 1–11.Google Scholar
  37. Joseph, George Gheverghese (1990). The Crest of the Peacock. Non-European Roots of Mathematics. London-New York: I.B. Tauris.Google Scholar
  38. Kane, Pandurang Vaman (1974). History of Dharmaśāstra (Ancient and Mediaeval Religious and Civil Law). Vol. V, Part I. Poona: Bhandarkar Oriental Research Institute. (Government Oriental Series, Class B, No. 6.)Google Scholar
  39. Kaye, G. R. (1919). ‘Influence grecque dans le développement des mathématiques hindoues’, Scientia 25: 1–14.Google Scholar
  40. Keller, Agathe (2000). Un commentaire indien du VIIème siècle. Bhāskara et le gan. ita-pāda de l'Āryabhatīya. Thèse de doctorat. Universitè Paris 7. Soutenue le 21 mars 2000.Google Scholar
  41. Kline, Morris (1972). Mathematical Thought from Ancient to Modern Times. Volume I. New York-Oxford: Oxford University Press.Google Scholar
  42. Kuppuram, G. and K. Kumudamani (1990). History of Science and Technology in India. Vol. II: Mathematics, Astronomy. Delhi: Sundeep Prakashan.Google Scholar
  43. Lindtner, Christian (2000). ‘King Jagajjyotirmalla's Ślokasārasam. grahah.’, AS 54(1): 47–66.Google Scholar
  44. Lloyd, G.E.R. (1990). Demystifying Mentalities. Cambridge etc.: Cambridge University Press. Reprinted 1993.Google Scholar
  45. Martzloff, Jean-Claude (1997). A History of Chinese Mathematics (Translation of Histoire des mathématiques chinoises, Masson, Paris 1987, tr. Stephen S. Wilson). Berlin: Springer.Google Scholar
  46. Meulenbeld, G.J. (1999 ff.). A History of Indian Medical Literature. To be completed in 3 vols. Groningen: Egbert Forsten. (Groningen Oriental Studies, 15.) Michaels, Axel (1978). Beweisverfahren in der vedischen Sakralgeometrie: ein Beitrag zur Entstehungsgeschichte von Wissenschaft. Wiesbaden: Franz Steiner. (Alt-und Neu-Indische Studien, 20.)Google Scholar
  47. Müller, Conrad (1940). ‘Volumen und Oberfläche der Kugel bei Āryabhat.a I’, Deutsche Mathematik 5(3): 244–255.Google Scholar
  48. Needham, Joseph (1959). Science and Civilisation in China. Vol. 3: Mathematics and the Sciences of the Heavens and the Earth. Cambridge: Cambridge University Press.Google Scholar
  49. Netz, Reviel (1999). The Shaping of Deduction in Greek Mathematics. A Study in Cognitive History. Cambridge etc.: Cambridge University Press.Google Scholar
  50. Neugebauer, O. (1957). The Exact Sciences in Antiquity. 2nd ed. Providence, Rhode Island: Brown University Press.Google Scholar
  51. Pādalipta: Jyotiskarandaka. In: Païnnayasuttāim Part III: Pādaliptasūri's Joïsakarandagam with Prākrta tippanaka by Vācaka Śivanandi. Ed. Muni Shri Punyavijayaji. Bombay: Shri Mahāvīra Jaina Vidyiālaya. (Jaina-Āgama-Series no. 17, part III.)Google Scholar
  52. Pingree, David (1970–1994). Census of the Exact Sciences in Sanskrit. Series A, vol. 1-5. Philadelphia: American Philosophical Society.Google Scholar
  53. Pingree, David (1971). ‘On the Greek Origin of the Indian Planetary Model Employing a Double Epicycle’, Journal for the History of Astronomy 2: 80–85.Google Scholar
  54. Pingree, David (1978). ‘History of Mathematical Astronomy in India’, in Charles Coulston Gillispie (ed.), Dictionary of Scientific Biography. Vol. XV, Supplement I, pp. 533–633. New York: Charles Scribner's Sons.Google Scholar
  55. Pingree, David (1981). Jyotihśāstra. Astral and Mathematical Literature. Wiesbaden: Otto Harrassowitz. (HIL vol. VI, fasc. 4.)Google Scholar
  56. Pingree, David (1993). ‘Āryabhat.a, the Paitāmahasiddhānta, and Greek Astronomy’, Studies in History of Medicine and Science, new series 12(1–2): 69-79.Google Scholar
  57. Plofker, Kim (1996). ‘How to Appreciate Indian Techniques for Deriving Mathematical Formulas’ in Catherine Goldstein, Jeremy Gray and Jim Ritter (eds.), L'Europe mathématique: histoires, mythes, identités/Mathematical Europe: History, Myth, Identity, pp. 53–65. Paris: Éditions de la Maison des sciences de l'homme.Google Scholar
  58. Pottage, John (1974). ‘The Mensuration of Quadrilaterals and the Generation of Pythagorean Triads: A Mathematical, Heuristical and Historical Study with Special Reference to Brahmagupta's Rules’, AHES 12, 299–354.Google Scholar
  59. Prakash Sarasvati, Svami Satya (1986). A Critical Study of Brahmagupta and his Works (the Most Distinguished Indian Astronomer and Mathematician of the Sixth Century A.D.). Delhi: Govindram Hasanand.Google Scholar
  60. Ruegg, David Seyfort (1978). ‘Mathematical and Linguistic Models in Indian Thought: The Case of Śūnyatā’, WZKS 22: 171–181.Google Scholar
  61. Sarasvati Amma, T.A. (1999). Geometry in Ancient and Medieval India. Second revised edition. Delhi: Motilal Banarsidass.Google Scholar
  62. Schroeder, L. v. (1884). Pythagoras und die Inder. Eine Untersuchung über Herkunft und Abstammung der pythagoreischen Lehren. Leipzig: Otto Schulze.Google Scholar
  63. Seidenberg, A. (1962). ‘The Ritual Origin of Geometry’, AHES 1: 488–527.Google Scholar
  64. Seidenberg, A. (1975). ‘Did Euclid's Elements, Book I, Develop Geometry Axiomatically?’ AHES 14: 263–295.Google Scholar
  65. Seidenberg, A. (1978). ‘The Origin of Mathematics’, AHES 18: 301–342.Google Scholar
  66. Seidenberg, A. (1983). 'The Geometry of the Vedic Rituals’, = Staal, 1983: II: 95–126.Google Scholar
  67. Shapiro, Stewart (1997). Philosophy of Mathematics. Structure and Ontology. New York-Oxford: Oxford University Press.Google Scholar
  68. Sharma, Ram Swarup (1966). Shri Brahmagupta viracita Brāhma-sphutūa Siddhānta, with Vāsanā, Vijñāna and Hindi Commentaries. Edited by a board of editors headed by... Ram Swarup Sharma. 4 vols. New Delhi: Indian Institute of Astronomical and Sanskrit Research.Google Scholar
  69. Shukla, Kripa Shankar (1972). ‘Hindu Mathematics in the Seventh Century as Found in Bhāskara I's Commentary on the Āryabhatīya (IV)’, Ganita 23(2): 41–50.Google Scholar
  70. Shukla, Kripa Shankar (ed.) (1976). Āryabhatīya of Āryabhat. a, with the Commentary of Bhāskara I and Someśvara. New Delhi: Indian National Science Academy. (Āryabhatīya Critical Edition Series, Pt. 2.)Google Scholar
  71. Singh, Navjyoti (1990). ‘Foundations of Logic in Ancient India: Linguistics and Mathematics’, = Kuppuram and Kumudamani, 1990: 245–287.Google Scholar
  72. Smeur, A.J.E.M. (1970). ‘On the Value Equivalent to π in Ancient Mathematical Texts: A New Interpretation’, AHES 6: 249–270.Google Scholar
  73. Smith, David Eugene (1923). History of Mathematics, Vol. I: General Survey of the History of Elementary Mathematics. Reprint: Dover, New York, 1958.Google Scholar
  74. Srinivas, M.D. (1990). ‘The Methodology of Indian Mathematics and its Contemporary Relevance’, = Kuppuram and Kumudamani, 1990: 29–86.Google Scholar
  75. Staal, Frits (1960). Review of Contributions à l'histoire de la philosophie linguistique indienne by D.S. Ruegg. PEW 10: 53–57.Google Scholar
  76. Staal, Frits (1963). ‘Euclides and Pānini: twee methodische richtlijnen voor de filosofie’, (Amsterdam: Polak & Van Gennep) = Staal, 1986: 77–115.Google Scholar
  77. Staal, Frits (1983). AGNI. The Vedic Ritual of the Fire Altar. 2 vols. Berkeley: Asian Humanities Press.Google Scholar
  78. Staal, Frits (1986). Over zin en onzin in filosofie, religie en wetenschap. Amsterdam: Meulenhoff Informatief.Google Scholar
  79. Staal, Frits (1988). Universals. Studies in Indian Logic and Linguistics. University of Chicago Press.Google Scholar
  80. Staal, Frits (1993). Concepts of Science in Europe and Asia. Leiden: International Institute for Asian Studies.Google Scholar
  81. Staal, Frits (1999). ‘Greek and Vedic Geometry’, JIP 27(1/2) (Guruvandana: Essays in Indology in Honour of K. Bhattacharya), 105–127.Google Scholar
  82. Staal, J.F. (= Frits) (1965). ‘Euclid and Pānini’ (PEW 15, 99–116) = Staal, 1988: 143-160.Google Scholar
  83. Subbarayappa, B.V., and K.V. Sarma (1985). Indian Astronomy: A Source Book (Based Primarily on Sanskrit Texts). Bombay: Nehru Centre.Google Scholar
  84. Umāsvāti (1926, 1930). Tattvārthādhigama stra Bhāsya. Edited, with the commentaries of Devaguptasri and Siddhasenagan. i, by Hiralal Rasikdas Kapadia. 2 vols. Bombay: Jivanchand Sakerchand Javeri.Google Scholar
  85. van der Waerden, B.L. (1980). ‘On Pre-Babylonian Mathematics, I, and II’, AHES 23: 1–25 & 27-46.Google Scholar
  86. van der Waerden, Bartel Leendert (1983). Geometry and Algebra in Ancient Civilizations. Berlin etc.: Springer.Google Scholar
  87. Vogel, Claus (1997). ‘On the Date of the Pos. adha Ceremony as Taught by the mlasarvāstivādins’, in Petra Kieffer-Pülz and Jens-Uwe Hartmann (eds.), Bauddhavidyāsudhākarah. Studies in Honour of Heinz Bechert on the Occasion of His 65th Birthday, pp. 673–688. Swisttal-Odendorf: Indica et Tibetica Verlag. (IndTib 30.)Google Scholar
  88. Wujastyk, Dominik (1993). Metarules of Pāninian Grammar. Vyādi's Paribhāsāvrtti. 2 vols. Groningen: Egbert Forsten. (Groningen Oriental Studies, 5)Google Scholar
  89. Yabuuti, Kiyosi (2000). Une histoire des mathématiques chinoises. Traduit du japonais par Kaoru Baba et Catherine Jami. Paris: Belin-Pour La Science.Google Scholar
  90. Yano, Michio (1987). ‘Science and Religion in Ancient India’, Zen Buddhism Today 5: 50–59.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Johannes Bronkhorst
    • 1
  1. 1.Section de langues et civilisations orientalesUniversité de LausanneLausanneSwitzerland

Personalised recommendations