Hydrobiologia

, Volume 442, Issue 1–3, pp 55–66 | Cite as

Morphological differentiation within the Daphnia longispina group

  • Sabine Gießler
Article

Abstract

Although morphological evolution is assumed to be slow within Daphnia species complexes, discontinuities in morphological space can be detected. Here, morphological data derived from females of genetically-defined clones (cf. Gießler et al., 1999) are presented, in order to estimate the genetic component of phenotypic variance under standardised laboratory conditions. Animals originated from clonal assemblages of pre-alpine lakes and ponds, and a remote lake in western Germany, covering a wide range of morphotypes known from the traditional species D. cucullata, D. galeata, D. hyalina, D. rosea, and a variety of interspecific hybrids. Phenotypic analyses were based on quantitative and qualitative morphological characters of females in the first and fifth instars. Morphological divergence between clones was analysed using discriminant analysis or multidimensional scaling and the significance of the morphological groupings was estimated using neighbour-joining trees and bootstrapping. All analyses confirmed that (a) phenotypic similarities among taxa change with instar, (b) in contrast to low genetic divergence, pronounced morphological divergence exists between animals separated on the lake/pond level favouring speciation by the habitat shift hypothesis.

Daphnia morphological divergence discriminant analysis multidimensional scaling bootstrap phenotypic evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal A. A., C. Laforsch & R. Tollrian, 1999. Transgenerational induction of defences in animals and plants. Nature 401: 60–63.Google Scholar
  2. Boersma, M., P. Spaak & L. De Meester, 1998. Predator-mediated plasticity in morphology, life-history, and behavior of Daphnia: the uncoupling of responses. Am. Nat. 152: 237–248.Google Scholar
  3. Bookstein, F., B. Chernoff, R. Elder, J. Humphries, G. Smith & R. Strauss, 1985. Morphometrics in Evolutionary Biology. The Academy of Natural Sciences of Philadelphia.Google Scholar
  4. Brooks, J. L., 1957. The systematics of North American Daphnia. Memoirs of the Connecticut Acad. Arts Sci. 13: 1–180.Google Scholar
  5. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.Google Scholar
  6. Colbourne, J. K. & P. D. N. Hebert, 1996. The systematics of North American Daphnia (Crustacea: Anomopoda): a molecular phylogenetic approach. Phil. Trans. R. Soc. Lond. B 351: 349–360.Google Scholar
  7. Colbourne, J. K., P. D. N. Hebert & D. J. Taylor, 1997. Evolutionary origins of phenotypic diversity in Daphnia. In Givnish, T. J. & K. J. Sytsma (eds), Molecular Evolution and Adaptive Radiation. Cambridge University Press: 163–188.Google Scholar
  8. De Meester L., L. J. Weider & R. Tollrian, 1995. Alternative antipredator defences and genetic polymorphism in a pelagic predator-prey system. Nature 378: 483–485.Google Scholar
  9. Dodson, S. I. & J. E. Havel, 1988. Indirect prey effects: some morphological and life history responses of Daphnia pulex exposed to Notonecta undulata. Limnol. Oceanogr. 33: 1274–1285.Google Scholar
  10. Englbrecht, C., 1995. Genetische Charakterisierung von Daphnia hyalina und D. rosea (Crustacea, Phyllopoda), zweier Arten aus dem D. longispina Hybridartenkomplex: RAPD-PCR und Analyse der internal transcribed spacer (ITS). Diplome thesis, LMU Munich, Germany.Google Scholar
  11. Flößner, D., 1972. Kiemen-und Blattfüßer, Branchiopoda, Fischläuse, Branchiura. In Dahl, F. (ed.), Die Tierwelt Deutschlands. Gustav Fischer Verlag, Jena: 1–499.Google Scholar
  12. Flößner, D., 1993. Zur Kenntnis einiger Daphnia-Hybriden. Limnologica 23: 71–79.Google Scholar
  13. Gießler, S., 1987. Mikroevolution and Populationsgenetik im Daphnia galeata /hyalina /cucullata-Komplex (Crustacea: Cladocera). Eine Freilandanalyse. Ph.D. thesis, University of Munich, Germany.Google Scholar
  14. Gießler, S., 1997a. Analysis of reticulate relationships within the Daphnia longispina complex. Allozyme phenotype and morphology. J. Evol. Biol. 10: 87–105.Google Scholar
  15. Gießler, S., 1997b. Gene flow in the Daphnia longispina hybrid complex (Crustacea, Cladocera) inhabiting large lakes. Heredity 79: 231–241.Google Scholar
  16. Gießler, S., E. Mader & K. Schwenk, 1999. Morphological evolution and genetic differentiation in Daphnia species complexes. J. Evol. Biol. 12: 710–723.Google Scholar
  17. Harrison, M. K. & B. J. Crespi, 1999. A phylogenetic test of ecomorphological adaptations in Cancer crabs. Evolution 53: 961–965.Google Scholar
  18. Hebert, P. D. N., S. S. Schwartz & J. Hrbáček, 1989. Patterns of genotypic diversity in Czecheslovakian Daphnia. Heredity 62: 207–216.Google Scholar
  19. Hrbáček, J., 1987. Systematics and biogeography of Daphnia species in the northern temperate regions. Mem. Ist. ital. Idrobiol. 45: 37–76.Google Scholar
  20. Jacobs, J., 1977. Coexistence of similar zooplankton species by differential adaptation to reproduction and escape, in an environment with fluctuating food and enemy densities. II. Field data analysis of Daphnia. Oecologia 30: 313–329.Google Scholar
  21. Jacobs, J., 1980. Environmental Control of Cladoceran Cyclomorphosis via Target-Specific Growth Factorsin the Animal. In Kerfoot, W. Ch. (ed.), Evol. & Ecol. of Zoopl. Com., Univ. Press of New England: 429–437.Google Scholar
  22. Krüger, D. A. & S. Dodson, 1981. Embryological induction and predation ecology in Daphnia pulex. Limnol. Oceanogr. 26: 219–223.Google Scholar
  23. Lampert, W., 1993. Phenotypic plasticity of the size at 1st reproduction in Daphnia - the importance of maternal size. Ecology 74: 1455–1466.Google Scholar
  24. Leibold, M. A., 1991. Trophic interactions and habitat segregation between competing Daphnia spp. Oecologia 86: 510–520.Google Scholar
  25. McPeek, M. A., 1995. Testing hypothesis about evolutionary change on single branches of a phylogeny using evolutionary contrasts. Am. Nat. 145: 686–703.Google Scholar
  26. Müller, J., 1993. Räumliche und zeitliche Variabilität der genetischen Struktur natürlicher Cladocerenpopulationen (Crustacea, Cladocera). Ph.D. thesis, J. Gutenberg-Universität, Mainz, Germany.Google Scholar
  27. Nei, M., 1972. Genetic distance between populations. Am. Nat. 106: 283–292.Google Scholar
  28. Felsenstein, J., 1993. Phylip (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle.Google Scholar
  29. Richards, R. A., 1992. Habitat selection and predator avoidance: ontogenetic shifts in habitat use by the Jonah crab Cancer borealis (Stimpson). J. exp. mar. Biol. Ecol. 156: 187–197.Google Scholar
  30. Schwenk, K., 1993. Interspecific hybridization in Daphnia: distinction and origin of hybrid matrilines. Mol. Biol. Evol. 10: 1289–1302.Google Scholar
  31. Schwenk, K., A. Sand, M. Boersma, M. Brehm, E. Mader, D. Offerhaus & P. Spaak, 1998. Genetic markers, genealogies and biogeographic patterns in the cladocera. Aquat. Ecol. 32: 37–51.Google Scholar
  32. Spaak, P. & J. R. Hoekstra, 1995. Life history variation and the coexistence of a Daphnia hybrid with its parental species. Ecology 76: 553–564.Google Scholar
  33. Spitze, K., 1992. Predator-mediated plasticity of prey life history and morphology - Chaoborus americanus predation on Daphnia pulex. Am. Nat. 139: 229–247.Google Scholar
  34. SPSS, 1996. SPSS Reference Guide. SPSS/PC version 6.1. Chicago, Illinois.Google Scholar
  35. Stibor, H., 1992. Predator-induced life-history shifts in a freshwater cladoceran. Oecologica 92: 162–165.Google Scholar
  36. Stibor, H. & W. Lampert, 2000. Components of additive variance in life-history traits of Daphnia hyalina: seasonal differences in the response to predator signals. Oikos 88: 129–138.Google Scholar
  37. Stich, H. B. & W. Lampert, 1981. Predator evasion as an explanation of diurnal vertical migration by zooplankton. Nature 291: 396–398.Google Scholar
  38. Taylor, B. E. & W. Gabriel, 1992. To grow or not to grow: optimal resource allocation for Daphnia. Am. Nat. 139: 248–266.Google Scholar
  39. Taylor, D. J. & P. D. N. Hebert, 1993a. Habitat-dependent hybrid parentage and differential introgression between neighboringly sympatric Daphnia species. Proc. natn. Acad. Sci. U.S.A. 90: 7079–7083.Google Scholar
  40. Taylor, D. J. & P. D. N. Hebert, 1993b. Cryptic intercontinental hybridization in Daphnia (Crustacea) - the ghost of introductions past. Proc. Roy. Soc. Lond. B 254: 163–168.Google Scholar
  41. Taylor, D. J., P. D. N. Hebert & J. K. Colbourne, 1996. Phylogenetics and Evolution of the Daphnia longispina group (Crustacea) based on 12S rDNA sequence and allozyme variation. Molec. Phylogenet. Evol. 5: 495–510.Google Scholar
  42. Tollrian, R., 1995. Predator-induced morphological defences: costs, life history shifts and maternal effects in Daphnia pulex. Ecology 76: 1691–1705.Google Scholar
  43. Tollrian, R. & S. I. Dodson, 1998. Inducible defenses in Cladocera: constraints, costs and multipredator environments. In Tollrian, R. & C. D. Harvell (eds), Ecology and Evolution of inducible defenses. Princeton University Press: 177–202.Google Scholar
  44. Weider L. J., A. Hobæk, J. K. Colbourne, T. J. Crease, F. Dufresne & P. D. N. Hebert, 1999. Holarctic phylogeography of an asexual species complex I. Mitochondrial DNA variation in arctic Daphnia. Evolution 53: 777–792.Google Scholar
  45. Weider, L. J. & J. Pijanowska, 1993. Plasticity of Daphnia life histories in response to chemical cues from predators. Oikos 67: 385–392.Google Scholar
  46. Wellborn, G. A., 1994. Size-biased predation and prey life histories: a comparative study of freshwater amphipod populations. Ecology 75: 2104–2117.Google Scholar
  47. Wolf, H. G. & M. A. Mort, 1986. Inter-specific hybridization underlies phenotypic variability in Daph-nia populations. Oecologia 68: 507–511.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Sabine Gießler
    • 1
  1. 1.Zoologisches Institut der LMU München, Abt. ÖkologieMünchenGermany

Personalised recommendations