Optical and Quantum Electronics

, Volume 33, Issue 7–10, pp 811–826

High repetition rate femtosecond WDM pulse generation using direct space-to-time pulse shapers and arrayed waveguide gratings

  • D.E. Leaird
  • A.M. Weiner
  • S. Shen
  • A. Sugita
  • S. Kamei
  • M. Ishii
  • K. Okamoto
Article

Abstract

For the application of high repetition rate wavelength division multiplexed (WDM) pulse train generation from a femtosecond modelocked fiber laser, the direct space-to-time pulse shaper and a properly designed arrayed waveguide grating (AWG) are equivalent. The analogy between the bulk optics and integrated configuration is explored for this application. The critical design parameters of the AWG are the free spectral range and the pathlength difference between adjacent guides in the array.

ultrafast optics pulse shaping arrayed waveguide gratings wavelength division multiplexing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adar, R., C.H. Henry, C. Dragone, R.C. Kistler and M.A. Milbrodt. J. Lightwave Tech. 11 212, 1993.Google Scholar
  2. Colombeau, B., M. Vampouille and C. Froehly. Opt. Comm. 19 201, 1976.Google Scholar
  3. Frochly, C., B. Colombeau and M. Vampouille. In: Progress in Optics, E. Wolf, ed. 20 65, 1983.Google Scholar
  4. Goodman, J.W. Introduction to Fourier Optics, McGraw-Hill, New York, 1968.Google Scholar
  5. Kawanishi, S. IEEE J. Quantum Electron. 34 2064, 1998.Google Scholar
  6. Kawanishi, S., H. Takara, K. Uchiyama, I. Shake and K. Mori. Electron. Lett. 35 826, 1999.Google Scholar
  7. Khrushchev, I.Y., J.D. Bainbridge, J.E.A. Whiteaway, I.H. White and R.V. Penty. IEEE Photon. Tech. Lett. 11 1659, 1999.Google Scholar
  8. Leaird, D.E. and A.M. Weiner. Opt. Lett. 24 853, 1999.Google Scholar
  9. Leaird, D.E. and A.M. Weiner. In: Conference on Lasers and Electro-Optics, OSA Technical Digest, PP. 410-411, 2000a.Google Scholar
  10. Leaird, D.E. and A.M. Weiner. Opt. Lett., 25 850, 2000b.Google Scholar
  11. Leaird, D.E., S. Shen, A.M. Weiner, A. Sugita, S. Kamei, M. Ishii and K. Okamoto. In: Conference on Lasers and Electro-Optics Postdeadline Papers, CPD18 2000.Google Scholar
  12. Leaird, D.E., A.M. Weiner, S. Shen, A. Sugita, S. Kamei, M. Ishii and K. Okamoto. IEEE Photon. Tech. Lett. 13 221, 2001.Google Scholar
  13. Leaird, D.E. and A.M. Weiner. IEEE J. Quantum Electron. 37, 494, 2001.Google Scholar
  14. Martinez, O. J. Opt. Soc. Am. B. 3 929, 1986.Google Scholar
  15. Okamoto, K. Opt. Quantum Electron. 31 107, 1999.Google Scholar
  16. Takahashi, H., K. Oda, H. Toba and Y. Inoue. J. Lightwave Tech. 13 447, 1995.Google Scholar
  17. Wefers, M. and K.A. Nelson. IEEE J. Quantum Electron. 32 161, 1996.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • D.E. Leaird
    • 1
    • 2
  • A.M. Weiner
    • 1
    • 2
  • S. Shen
    • 1
  • A. Sugita
    • 3
  • S. Kamei
    • 3
  • M. Ishii
    • 3
  • K. Okamoto
    • 3
  1. 1.School of Electrical & Computer EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.Center for Education and Research in Information Assurance and SecurityCERIAS Purdue UniversityWest Lafayette
  3. 3.NTT Photonics LaboratoriesNaka-gun, Ibaraki-pref.Japan

Personalised recommendations