Journal of Engineering Mathematics

, Volume 36, Issue 1–2, pp 113–136 | Cite as

Application of multiple-length-scale methods to the study of optical fiber transmission

  • C. R. Menyuk

Abstract

It is natural to apply multiple-length-scale methods to the study of optical-fiber transmission because the key length scales span 13 orders of magnitude and cluster in three main groups. At the lowest scale, corresponding to micrometers, the full set of Maxwell's equations should be used. At the intermediate scale, corresponding to the range from one centimeter to tens of meters, the coupled nonlinear Schrödinger equation should be used. Finally, at the longest length scale, corresponding to the range from tens to thousands of kilometers, the Manakov-PMD equation should be used, and, when polarization mode dispersion can be neglected and the fiber gain and loss can be averaged out, one arrives at the scalar nonlinear Schrödinger equation. As an illustrative example of multiple-scale-length techniques, the nonlinear Schrödinger equation will be derived, carefully taking into account the actual length scales that are important in optical-fiber transmission.

optical fibers multiple length scales nonlinearity birefringence communications. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Bloembergen, Nonlinear Optics. Reading (MA): Benjamin (1965) 229 pp.Google Scholar
  2. 2.
    Y. R. Shen, The Principles of Nonlinear Optics. New York: Wiley (1984) 563 pp.Google Scholar
  3. 3.
    G. P. Agrawal, Nonlinear Fiber Optics. San Diego: Academic (1995) 592 pp.Google Scholar
  4. 4.
    A. Hasegawa and Y. Kodama, Solitons in Optical Communications. Oxford: Clarendon (1995) 320 pp.Google Scholar
  5. 5.
    A. Hasegawa and F. D. Tappert, Transmission of stationary nonlinear pulses optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23 (1973) 142–144.Google Scholar
  6. 6.
    C. R. Menyuk, Pulse propagation in an elliptically birefringent Kerr medium. IEEE J. Quantum Electron. 25 (1989) 2674–2682.Google Scholar
  7. 7.
    C. R. Menyuk, Impairments due to nonlinearity and birefringence in optical fiber transmission systems. In: A. E. Willner and C. R. Menyuk (eds), System Technologies. Washington: Optical Society of America TOPS Vol. 12 (1997) 523 pp.Google Scholar
  8. 8.
    S. B. Alexander, The WDM Revolution. In: A. E. Willner and C. R. Menyuk (eds), System Technologies. Washington: Optical Society of America TOPS Vol. 12 (1997) 523 pp.Google Scholar
  9. 9.
    Examples of currently available commercial software packages are BroadNeD and OPALS by Virtual Photonics F.C.Google Scholar
  10. 10.
    H. Poincaré, Les méthodes nouvelles de la mécanique céleste, tome I. Paris: Gauthier-Villars (1892) 385 pp.Google Scholar
  11. 11.
    A large number of such problems can be found cited by H. Minorsky, Nonlinear Oscillations. Princeton (NJ): Van Nostrand (1962) 714 pp.; A. Nayfeh, Perturbation Methods. New York: Wiley (1973) 425 pp.Google Scholar
  12. 12.
    Y. Kodama, Optical solitons in a monomode fiber. J. Stat. Phys. 39 (1985) 597–614.Google Scholar
  13. 13.
    P. Appell, Henri Poincaré. Paris: Plon-Nourrit (1925) 121 pp.Google Scholar
  14. 14.
    J. Gowar, Optical Communication Systems. New York: Prentice Hall (1993) 696 pp.Google Scholar
  15. 15.
    C. R. Menyuk, D. Wang and A. N. Pilipetskii, Repolarization of polarization-scrambled signals due to polarization dependent loss. IEEE Photon. Technol. Lett. 9 (1997) 1247–1249.Google Scholar
  16. 16.
    A. R. Chraplyvy, Limitations on lightwave communications imposed by optical-fiber nonlinearities. J. Lightwave Technol. 8 (1990) 1548–1557.Google Scholar
  17. 17.
    R. W. Hellwarth, Third-order optical susceptibilities of liquids and solids. Prog. Quant. Electron. 5 (1977) 1–68.Google Scholar
  18. 18.
    C. R. Menyuk, M. N. Islam and J. P. Gordon, Raman effect in birefringent optical fibers. Opt. Lett. 16 (1991) 566–568.Google Scholar
  19. 19.
    R. H. Stolen, J. P. Gordon, W. J. Tomlinson and H. A. Haus, Raman response function of silica core fibers. J. Opt. Soc. Am. B 6 (1989) 1159–1166.Google Scholar
  20. 20.
    P. K. A. Wai and C. R. Menyuk, Polarization decorrelation in optical fibers with randomly varying birefringence. Opt. Lett. 19 (1994) 1517–1519.Google Scholar
  21. 21.
    P. K. A. Wai and C. R. Menyuk, Anisotropic diffusion of the state of polarization in optical fibers with randomly varying birefringence. Opt. Lett. 20 (1995) 2490–2492.Google Scholar
  22. 22.
    C. R. Menyuk and P. K. A. Wai, Polarization evolution and dispersion in fibers with spatially varying birefringence. J. Opt. Soc. Am. B 11 (1994) 1288–1296.Google Scholar
  23. 23.
    P. K. A. Wai and C. R. Menyuk, Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence. J. Lightwave Technol. 14 (1996) 148–157.Google Scholar
  24. 24.
    C. D. Poole and J. Nagel, Polarization effects in lightwave systems. In: I. P. Kaminow and T. L. Koch (eds), Optical Fiber Telecommunications, Vol. IIIA. San Diego: Academic (1997) 608 pp.Google Scholar
  25. 25.
    C. D. Poole, Statistical treatment of polarization dispersion in single-mode fiber. Opt. Lett. 13 (1988) 687–689.Google Scholar
  26. 26.
    D. Marcuse, C. R. Menyuk and P. K. A. Wai, Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence. J. Lightwave Technol. 15 (1997) 1735–1746.Google Scholar
  27. 27.
    L. F. Mollenauer, S. G. Evangelides, Jr. and H. A. Haus, Long-distance soliton propagation using lumped amplifiers and dispersion shifted fiber. J. Lightwave Technol. 9 (1991) 194–197.Google Scholar
  28. 28.
    K. J. Blow and N. J. Doran, Average soliton dynamics and the operation of soliton systems with lumped amplifiers. IEEE Photon. Technol. Lett. 3 (1991) 369–371.Google Scholar
  29. 29.
    J. C. Bronski and J. N. Kutz, Modulational stability of plane waves in nonreturn-to-zero communications systems with dispersion management. Opt. Lett. 21 (1996) 937–939.Google Scholar
  30. 30.
    S. K. Turitsyn, Theory of average pulse propagation in high-bit-rate optical transmission systems with strong dispersion management. JETP Lett. 65 (1997) 845–851, (Pisma Zh. Eksp. Tear. Fiz. 65 (1997) 812–817).Google Scholar
  31. 31.
    Y. Kodama, S. Kumar and A. Manuta, Chirped nonlinear pulse propagation in a dispersion-compensated system. Opt. Lett. 22 (1997) 1689–1691.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • C. R. Menyuk
    • 1
  1. 1.Department of Computer Science and Electrical EngineeringUniversity of Maryland Baltimore CountyBaltimoreU.S.A

Personalised recommendations