Earth, Moon, and Planets

, Volume 85, Issue 0, pp 99–113 | Cite as

Lunar Influences On Climate

  • Dario Camuffo


Popular beliefs on the effects of the Moon on the weather probably go back to when ancient civilisations followed a lunar calendar, and the Moon went from being a purely temporal reference to becoming a causal reference. The incoming heat flow on the Earth may vary slightly after solar activity. to and generate considerable effects. The light reflected from the Moon has also been hypothesised as a cause, but the associated energy is too small. The anomalistic period of the Moon (i.e., 27.5 days) coincides substantially with that of the sunspots found on the 17–18th parallel of the heliocentric latitude. Climatic modulation which lasts for around 27.5 days should be related to solar activity, which supplies energy with an amount of two orders of magnitude greater than the lunar-reflected energy. Another mechanism responsible for climatic variations is the redistribution of heat on the Earth. The Moon with the tides induces movement of the water masses of the oceans and with this there is a transport of heat. Semidiurnal lunar tides have been identified, although with modest impact, in the atmospheric pressure, the wind field and the precipitation. On a monthly time scale, variation of daily precipitation data shows that gravitational tides do indeed affect heavy rainfalls more than mean precipitation values. On the longer time scale, several authors have identified the 18.6-yr nutation cycle, which is clearly visible in several data analyses, but often it cannot be easily distinguished from the 19.9 Saturn–Jupiter cycle and the quasi-regular 22-yr double sunspot cycle which at times may be dominant. In the time scale of centuries, covering a number of periods with minimum solar activity, an analysis of meteorological data has demonstrated that only the Spörer Minimum (A.D. 1416–1534) was characterised by climatic anomalies., whereas the other periods had no singularities, or else the weak climate forcing was covered or masked by other factors, leaving the question still open. In practice, lunar and solar influences can be found and have been demonstrated with more or less the same level of confidence. Both have the same order of magnitude, and are generally weak, interacting, and being often masked by local effects.

Astronomic influence climate change Moon solar cycles weather 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Historical Sources

  1. Chiminello, V.: 1786, ‘Risultati di osservazioni barometriche per li quali si determina un doppio flusso e riflusso dell'atmosfera’, Saggi Scientifici e Letterari dell'Accademia di Padova, Tomo I, pp. 195–207, Accademia, Padova.Google Scholar
  2. Schiaparelli, G. V.: 1866a, Letter to Father Angelo Secchi, dated Milan, 13 April 1866.Google Scholar
  3. Schiaparelli, G. V.: 1866b, Letter to Father Angelo Secchi, dated Milan, 1 May 1866.Google Scholar
  4. Toaldo, G.: 1770 (1st edition), 1781 Saggio Meteorologico della vera influenza degli Astri, delle Stagioni e mutazioni di Tempo, Manfrè, Stamperia del Seminario, Padova.Google Scholar
  5. Toaldo, G.: 1775, La Meteorologia applicata all'Agricoltura, Storti, VeniceGoogle Scholar


  1. Adderly, E. E. and Bowen, E. G.: 1962, Science 137, 749–750.Google Scholar
  2. Balling, R. C. and Cerveny, R. S.: 1995, Science 267, 1481–1483.Google Scholar
  3. Berger, A.: 1981, in A. Berger (ed.), Climatic Variations and Variability: Facts and Theories, Reidel, Dordrecht (a) pp. 501–526; (b) pp. 411–432.Google Scholar
  4. Berger, A.: 1989, in A. Berger, S. Schneider and J. Cl. Duplessy (eds.), Climate and Geo-Sciences Kluwer, Dordrecht, pp. 47–76.Google Scholar
  5. Best, C. H.: 1994, Geophys. Res. Lett. 21, 2369–2372.Google Scholar
  6. Bigg, E. K.: 1963, Nature 197, 172–173.Google Scholar
  7. Bonnet, R. M.: 1985, in T. F. Malone and J. G. Roederer (eds.), Global Change, Cambridge University Press.Google Scholar
  8. Bradley, D. A., Woodbury, M. A., and Brier, G. W.: 1962, Science 137, 748–749.Google Scholar
  9. Brier, G. W. and Bradley, D. A.: 1964, J. Atmos. Sci. 21, 386–395.Google Scholar
  10. Bryant, E.: 1997, Climate Process and Change, Cambridge University Press, Cambridge, 209 pp.Google Scholar
  11. Bryson, R. A.: 1948, Am. Geophys. Union Trans. 29, 473–475.Google Scholar
  12. Burroughs, W. J.: 1992, Wheather Cycles Real or Imaginary? Cambridge University Press.Google Scholar
  13. Campbell, W. H., Blechman, J. B., and Bryson, R. A.: 1983, J. Clim. Appl. Meteorol. 22, 289–296.Google Scholar
  14. Camuffo, D.: 1984, Clim. Change 6, 57–77.Google Scholar
  15. Camuffo, D.: 1990, Clima e Uomo, Garzanti, Milano.Google Scholar
  16. Camuffo, D.: 1993, Theor. Appl. Climatol. 47, 1–14.Google Scholar
  17. Camuffo, D. and Enzi, S.: 1991, Theor. Appl. Climatol. 43, 43–73.Google Scholar
  18. Camuffo, D. and Enzi, S.: 1995, Paleoclim. Res. 16, 105–125Google Scholar
  19. Camuffo, D. and Enzi, S.: 1996, in P. D. Jones, R. S. Bradley and J. Jouzel (eds.), Climatic Variations and Forcing Mechanisms of the Last 2000 Years, NATO ASI, Global Environmental Change, Vol. 41, Springer Verlag, Stuttgart, pp. 433–450.Google Scholar
  20. Carpenter, T. H., Holle, R. L., and Fernandez-Partagas, J.J.: 1972, Mon. Wea. Rev. 100, 451–460.Google Scholar
  21. Cevolani, G.: 1989. Annales Geophysicae 7, 451–458.Google Scholar
  22. Cevolani, G. and Bonelli, P.: 1985, Nuovo Cimento C 8, 461–490.Google Scholar
  23. Cevolani, G. and Bonelli, P.: 1986, Giornale di Fisica 26, 267–283.Google Scholar
  24. Cevolani, G., Bacci, P., Bonelli, P., and Isnardi, C.: 1986, Nuovo Cimento. 9C, 729–760.Google Scholar
  25. Cevolani, G., Bonelli, P., and Isnardi, C.: 1987, Geophys. Res. Lett. 14, 45–48.Google Scholar
  26. Cevolani, G. and Bortolotti, G.: 1987, Nuovo Cimento 10C, 593–599.Google Scholar
  27. Chapman, S.: 1919, Quart. J. Roy. Meteorol. Soc. 45, 113–139.Google Scholar
  28. Chapman, S.: 1939, Meteorol. Mag. 74.Google Scholar
  29. Chapman, S.: 1951, in T. F. Malone (ed.), Compendium of Meteorology, American Meteorological Society, Boston, pp. 510–530.Google Scholar
  30. Colacino, M.: 1986, Theor. Appl. Climatol. 37, 90–96.Google Scholar
  31. Colacino, M. and Rovelli, A.: 1983, Tellus 35A, 389–397.Google Scholar
  32. Currie, R. G.: 1979, J. Geophys. Res. 84, 753–761.Google Scholar
  33. Currie, R. G.: 1981a, Science 211, 386–389.Google Scholar
  34. Currie, R. G.: 1981b, J. Geophys. Res. 86, 11055–11064.Google Scholar
  35. Currie, R. G.: 1982, Roy. Astron. Soc. Geophys. J. 69, 321–327.Google Scholar
  36. Currie, R. G.: 1984a, Geophys. Res. Lett. 11, 50–53.Google Scholar
  37. Currie, R. G.: 1984b, J. Geophys. Res. 89, 1295–1308.Google Scholar
  38. Currie, R. G.: 1984c, J. Geophys. Res. 89(D5), 7215–7230.Google Scholar
  39. Currie, R. G.: 1987, in M. S. Rampino, J. E. Sanders, W. S. Newman, and L.K. Königsson (eds.), Climate, History, Periodicity and Predictability, Van Nostrand Reinhold, New York, pp. 378–403.Google Scholar
  40. Currie, R. G. and Fairbridge, R. W.: 1985, Quart. Sci. Rev. 4, 109–134.Google Scholar
  41. Eddy, J. A.: 1976, Science 192, 1189–1202.Google Scholar
  42. Eddy, J. A.: 1977, Clim. Change 1, 173–190.Google Scholar
  43. Eddy, J. A.: 1981, in R. I. Rotberg and T. K. Rabb (eds.), Climate and History, Princeton University Press, pp. 145–167.Google Scholar
  44. Enzi, S. and Camuffo, D.: 1995, Nat. Hazards 12, 225–287.Google Scholar
  45. Fairbridge R. W. and Saunders, J. E.: 1987, in M. S. Rampino, J. E. Sanders, W. S. Newman, and L. K. Königsson (eds.), Climate, History, Periodicity and Predictability, Van Nostrand Reinhold, New York, pp. 446–471.Google Scholar
  46. Fairbridge, 1984, in N.A. Mörner and W. Karlén (eds.), Climatic Changes on a Yearly to Millennial Basis, Reidel, Dordrecht (a) pp. 181–190; (b) pp. 509–520.Google Scholar
  47. Fröhlich, C.: 1988, in H. Wanner and U. Siegenthaler (eds.), Long and Short Term Variability of Climate, Springer-Verlag, Berlin, pp. 6–17.Google Scholar
  48. Hameed, S., Yeh, W. M., Li, M. T., Cess, R. D., and Wang, W. C.: 1983, Geophys. Res. Lett. 10, 436–439.Google Scholar
  49. Hanson, K., Maul, G. A., and McLeish, W.: 1987, J. Clim. Appl. Meteorol. 26, 1358–1362.Google Scholar
  50. Haurwitz, B. and Cowley, A. D.: 1966, Mon. Wea. Rev. 94, 303–306.Google Scholar
  51. Haurwitz, B. and Cowley, A. D.: 1967, Beitr. Phys. Atmos. 40, 243–261.Google Scholar
  52. Haurwitz, B. and Cowley, A. D.: 1968a, Mon. Wea. Rev. 96, 601–605.Google Scholar
  53. Haurwitz, B. and Cowley, A. D.: 1968b, Geophys. J. Roy. Astron. Soc. 15, 103–107.Google Scholar
  54. Haurwitz, B. and Cowley, A. D.: 1969a, Pure Appl. Geophys. 77, 121–150.Google Scholar
  55. Haurwitz, B. and Cowley, A. D.: 1969b, Roy. Meteorol. Soc. 95, 766–770.Google Scholar
  56. Herman, J. R. and Goldberg, R. A.: 1978, Sun, Weather and Climate, Dover, New York.Google Scholar
  57. Imbrie, J. and Imbrie, J. Z.: 1980, Science 207, 943–953.Google Scholar
  58. Imbrie, J. and Imbrie, K. P.: 1979, Ice Ages: Solving the Mystery, MacMillan, London.Google Scholar
  59. Lamb, H. H.: 1972, Climate: Present, Past and Future, Vol. 1, Methuen, London.Google Scholar
  60. Landsberg, H. E.: 1976, J. Interdisc. Cycle Res. 7, 237–243.Google Scholar
  61. Lethbridge, M. D.: 1970, J. Geophys. Res. 75, 5149–5154.Google Scholar
  62. Lethbridge, M. D.: 1980, J. Geophys. Res. 8, 521–522.Google Scholar
  63. Markson, R.: 1971, Pure Appl. Geophys. 84, 161–200.Google Scholar
  64. Mason, B. I.: 1976, Quart. J. Roy. Meteorol. Soc. 102, 473–499.Google Scholar
  65. Sellers, W. D.: 1965, Physical Climatology, University of Chicago Press.Google Scholar
  66. Shine, K. P., Derwent, R. G., Wuebblles, D. J., and Morcrette, J. J.: 1990, in J. T. Houghton, G. J. Jenkins and J. J. Ephraums (eds.), Climate Change, the IPCC Scientific Assessment, Cambridge University Press, pp. 41–68.Google Scholar
  67. Solomon, S. and Srinivasan, J.: 1996, in J. T. Houghton et al. (eds.), Climate Change 1995, Cambridge University Press, pp. 65–131.Google Scholar
  68. Vines, R. G.: 1984, Clim. Change 6, 79–98.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Dario Camuffo
    • 1
  1. 1.CNR-Istituto di Scienze dell'Atmosfera e del ClimaPadovaItaly

Personalised recommendations