Advertisement

Hydrobiologia

, Volume 342, Issue 0, pp 165–175 | Cite as

Seasonal successions and trophic relations between phytoplankton, zooplankton, ciliate and bacteria in a hypertrophic shallow lake in Vienna, Austria

  • Jutta Mayer
  • Martin T. Dokulil
  • Monika Salbrechter
  • Martina Berger
  • Thomas Posch
  • Gerald Pfister
  • Alexander K. T. Kirschner
  • Branko Velimirov
  • Andrea Steitz
  • Til Ulbricht
Article

Abstract

Alte Donau nowadays is an eutrophic urban lake within the cityofVienna. Increasing nutrient concentrations and massive bloomsofcyanobacteria mainly caused by Limnothrix redekei VanGoorand Cylindrospermopsis raciborskii (Wołsz.) SeenayyaetSubba Raju were recently registered. As a consequence Secchidepthwas significantly reduced especially during the summer season(minimum: 0.25 m). An investigation including water chemistry,phytoplankton, macrophytes, and sediment was initiated in 1993andextended to metazooplankton, ciliates and bacteria in 1994.Thefirst half of the year 1994 was characterised by relativelyclearwater and a high diversity of the phytoplankton compositiondue toflushing of the lake with water of better quality by the endof1993. Ciliates and metazooplankton held about 10% of thetotalbiomass of all the investigated trophic levels. The vanishingofthe remaining macrophytes enlarged the nutrient supply duringsummer 1994 and favoured the development of cyanobacteria. Thehighwater temperatures which excluded certain zooplankton species,andthe inedibility of the filaments further increased thedominance ofcyanobacteria. In November, when the algal bloom finallyceased,the highest bacterial numbers of the investigation periodoccurred.Thereafter, other algal groups, bacteria and metazooplanktongainedmore importance.Interactions are possible because of close overlap in spaceandtime due to the turbulent mixed conditions of the water bodyandthe change from the macrophyte dominated to the algaldominatedstable state. Planned restoration measures must aim tore-establishthe previous macrophyte dominated clear-waterstage.

eutrophication trophic relations filamentouscyanobacteria ciliates zooplankton bacteria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beaver, J. R. & T. L. Crisman, 1982. The trophic response of ciliated protozoans in freshwater lakes. Limnol. Oceanogr. 27: 246–253.Google Scholar
  2. Bogdan, K. G., J. J. Gilbert & P. L. Starkweather, 1980. In situ clearance rates of planktonic rotifers. In Dumont, H. J. & J. Green (eds), Rotatoria. Developments in Hydrobiology 1. Dr W. Junk Publishers, The Hague: 73–77. Reprinted from Hydrobiologia 73.Google Scholar
  3. Bogdan, K. G. & J. J. Gilbert, 1987. Quantitative comparison of food niches in some freshwater zooplankton. A multitracer approach. Oecologia 72: 331–340.Google Scholar
  4. Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norw. J. Zool. 24: 419–456.Google Scholar
  5. Carpenter, S. R. (ed.), 1988. Complex Interactions in Lake Commmunities. Springer Verlag, 283 pp.Google Scholar
  6. Chróst, R. J. & M. A. Faust, 1983. Organic carbon release by phytoplankton: its composition and utilisation by bacterioplankton. J. Plankton Res. 5: 477–493.Google Scholar
  7. Dokulil, M. T. & G. A. Janauer, 1995. Alternative stable states during eutrophication of a shallow urban lake in Vienna, Austria. Proc. 6th Int. Conf. Conservation and management of lakes-Kasumigaura 95 Univ. Tsukuba, Japan 2: 730–733.Google Scholar
  8. Dokulil, M. T. & J. Mayer, in press. Population dynamics and photosynthetic rates of a Cylindrospermopsis-Limnothrixassociation in a highly eutrophic urban lake, Alte Donau, Vienna, Austria. Algol. Stud.Google Scholar
  9. Donabaum, K., M. Schagerl & M. T. Dokulil. Integrated lake management for the restoration of a stable equilibrium. In Ferguson, A., D. Harper, B. Brierley & G. Phillips (eds), The ecological Basis for River Management. John Wiley Publ., in press.Google Scholar
  10. Foissner, W., 1994. Progress in taxonomy of planktonic freshwater ciliates. Mar. Microbiol. Food Webs 8: 9–35.Google Scholar
  11. Foissner, W., H. Berger & F. Kohmann, 1992. Taxonomische und ökologische Revision der Ciliaten des Sabrobiensystems. Band 2: Peritrichia, Heterotrichida, Odontostomatida. Informationsberichte des Bayer. Landesamts für Wasserwirtschaft, Heft 5/92, 502 pp.Google Scholar
  12. Foissner, W., H. Berger & F. Kohmann, 1994. Taxonomische und ökologische Revision der Ciliaten des Sabrobiensystems. Band 3: Hymenostomata, Prostomatida, Nassulida. Informationsberichte des Bayer. Landesamts für Wasserwirtschaft, Heft 1/94, 548 pp.Google Scholar
  13. Foissner, W., H. Blatterer, H. Berger & F. Kohmann, 1991. Taxonomische und ökologische Revision der Ciliaten des Sabrobiensystems. Band 1: Cyrtophorida, Oligotrichida, Hypotrichia, Colpodea. Informationsberichte des Bayer. Landesamts für Wasserwirtschaft, Heft 1/91, 478 ppGoogle Scholar
  14. Geller, W. & H. Müller, 1981. The filtration apparatus of Cladocera: Filter mesh-sizes and their implications on food selectivity. Oecologia 49: 316–321.Google Scholar
  15. Gliwicz, Z. M., 1969. Studies on the feeding of pelagic zooplankton in lakes with varying trophy. Ekol. pol. 17A: 663–708.Google Scholar
  16. Gliwicz, Z. M., 1977. Food size selection and seasonal succession of filter-feeding zooplankton in an eutrophic lake. Ekol. pol. 25: 179–225.Google Scholar
  17. Herzig, A., 1979. The zooplankton of the open lake. In Löffler, H. (ed.), Neusiedlersee. Limnology of a Shallow Lake in Central Europe. Dr W. Junk Publishers, The Hague: 281–336.Google Scholar
  18. Hobbie, J. E., R. J. Dayley & S. Jasper, 1977. Use of nuclepore filters for counting bacteria by epifluorescense microscopy. Appl. envir. Microbiol. 33: 1225–1228.Google Scholar
  19. Jerome, C. A., D. J. S. Montagnes & F. J. R. Taylor, 1993. The effect of the quantitative protargol stain and Lugol’s and Bouin’s fixatives on cell size: A more accurate estimate of ciliate species biomass. J. Euk. Microbiol. 40: 254–259.Google Scholar
  20. Kahl, A., 1930–1935. Urtiere oder Protozoa I. Wimpertiere oder Ciliata (Infusoria). In Dahl, F. (ed.), Die Tierwelt Deutschlands 26 (18, 21, 25, 30). Fischer, Jena, 1886 pp.Google Scholar
  21. Krainer, K. H., 1988. Alpha-Taxonomie und ökologie neuer sowie mehrerer wenig bekannter pelagischer Ciliaten (Protozoa: Ciliophora aus den Klassen Kinetophragminophora, Oligohymenophora, Polyhymenophora) einiger Grundwasserbaggerteiche des nördlichen Leibnitzer Feldes (Steiermark, Österreich). Dissertation an der Karl-Franzens-Universität Graz, 209 pp.Google Scholar
  22. Lampert, W. & U. Sommer, 1993. Limnoökologie. Thieme Verlag, Stuttgart-New York, 440 pp.Google Scholar
  23. McCauley, E., 1984. The estimation of the abundance and biomass of Zooplankton in samples. In Downing, J. A. & F. H. Riegler (eds), A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters, Blackwell Scientific Publications, Oxford, London: 228–265.Google Scholar
  24. McNaught, D. C., 1975. A hypothesis to explain the succession from calanoids to cladocerans during eutrophication. Verh. int. Ver. Limnol. 19: 724–731.Google Scholar
  25. McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic relationships in fresh-water pelagic ecosystems. Can. J. Fish. aquat. Sci. 43: 1571–1581.Google Scholar
  26. Norland, S., 1993: The relationship between biomass and volume of bacteria. Curr. Meth. aquat. microbiol. ecol.: 303–307.Google Scholar
  27. Pfister, G., 1995. Untersuchungen zur Nahrungsselektivität von Protozoen am Beispiel des omnivoren Ciliaten Stylonychia mytilus. Diplomarbeit, Univ. Innsbruck, 73 pp.Google Scholar
  28. Posch, Th., 1995. Über die Aufnahme von feinpartikulärem Detritus durch Ciliaten. Diplomarbeit, Univ. Innsbruck, 64 pp.Google Scholar
  29. Posch, Th. & H. Arndt, 1996. Uptake of sub-micrometre-and micrometre-sized detrital particles by bacterivorous and ominvorous ciliates. Microbiol. Ecol. 10: 45–53.Google Scholar
  30. Pourriot, R., 1977. Food and feeding habits of rotifera. Arch. Hydrobiol. Beih. Ergebn. Limnol. 8: 243–260.Google Scholar
  31. Riemann, E. & M. Søndergaard, 1986. Regulation of bacterial secondary production in two eutrophic lakes and in experimental enclosures. Plankt. Res. 8: 519–536.Google Scholar
  32. Ruttner-Kolisko, A., 1977. Suggestions for biomass calculation of plankton rotifers. Arch. Hydrobiol. Beih. Ergebn. Limnol. 8: 71–76.Google Scholar
  33. Skibbe, O., 1994. An improved quantitative protargol stain for ciliates and other planktonic protists. Arch. Hydrobiol. 130: 339–347.Google Scholar
  34. Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. int. Ver. Limnol. 9: 1–38.Google Scholar
  35. Weisse, T., 1991. Ecological Characteristics of autotrophic picoplankton in a prealpine Lake. Int. Revue ges. Hydrobiol. 76: 493–504.Google Scholar
  36. Zaiss, U., 1985. Physiologische und ökologische Untersuchungen zur Regulation der Phosphatspeicherung bei Oscillatoria redekei. Arch. Hydrobiol./Suppl. 72: 166–219.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Jutta Mayer
    • 1
  • Martin T. Dokulil
    • 1
  • Monika Salbrechter
    • 1
  • Martina Berger
    • 1
  • Thomas Posch
    • 1
  • Gerald Pfister
    • 1
  • Alexander K. T. Kirschner
    • 2
  • Branko Velimirov
    • 2
  • Andrea Steitz
    • 2
  • Til Ulbricht
    • 2
  1. 1.Institute for LimnologyMondseeAustria
  2. 2.Institute of General BiologyUniversity of ViennaWienAustria

Personalised recommendations