Hydrobiologia

, Volume 369, Issue 0, pp 297–313 | Cite as

Taxonomic remarks on planktonic phytoflagellates in a hypertrophic tropical lagoon (Brazil)

  • Patrícia Domingos
  • Mariângela Menezes
Article

Abstract

The phototrophic flagellate flora of the Barra Lagoon (22°57′ S and 42°47′ W), Rio de Janeiro State, southeastern Brazil, is described. The lagoon is a shallow, oligohaline, hypertrophic ecosystem in which Cyanophyceae, Chlorophyceae and phytoflagellates are dominant. Between October 1990 and August 1993, weekly integrated samples were collected from a bay, using a plexiglass tube, 8 cm diameter and 1m length. All identifications, descriptions and measurements were carried out on live or in Lugol-fixed material. A total of 30 taxa, belonging to Euglenophyceae (5), Cryptophyceae (7), Raphidophyceae (1), Dinophyceae (4), Chrysophyceae (3), Prymnesiophyceae (2), Prasinophyceae (7) and Chlorophyceae (1) were identified. All the phytoflagellate species identified have been recorded previously from temperate sites. Nine of them were registered in a tropical water for the first time, suggesting that they have much broader distributions. Gymnodinium sanguineum, Pavlova lutheri and Pyramimonas grossii were the most frequently observed phytoflagellates in this study. The seasonal occurrence and some environmental requirements of selected phytoflagellates species are discussed.

planktonic phytoflagellates taxonomy seasonality hypertrophic brackish water tropical coastal lagoon Brazil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez-Cobelas, M. & B. A. Jacobsen, 1992. Hypertrophic phytoplankton: an overview. Freshwat. Forum 2: 184–199.Google Scholar
  2. Azevedo, S. M. F. O. & J-P. Carmouze, 1994. Une mortalité de poissons dans une lagune tropicale (Brésil) durant une période de dominance de Cyanophycées. Coincidence ou conséquence?. Rev. Hydrobiol. trop. 27: 265–272.Google Scholar
  3. Caljon, A. G., 1983. Brackish-water phytoplankton of the Flemish lowland. Dev. Hydrobiol. 48: 1–272.Google Scholar
  4. Carmouze, JP., B. Farias & P. Domingos, 1994a. Evolution du metabolism d'une lagune tropicale (Brèsil) au cours d'une période marquée par une mortalité de poisson. Rev. Hydrobiol. trop. 27: 199–215.Google Scholar
  5. Carmouze, JP., C. D'Elia Sampaio & P. Domingos, 1994b. Evolution des pools de matière organique et des nutriments dans une lagune tropicale (Brésil) aux cours d'une période marquée par une mortalité de poissons. Rev. Hydrobiol. trop. 27: 217–234.Google Scholar
  6. Carmouze, JP., M. Bernardes & P. Domingos, 1995. Asphyxie des lagunes cotières de l'état de Rio de Janeiro. ORSTOM Actualités 46: 23–26.Google Scholar
  7. Domingos, P., 1991. Estrutura da comunidade fitoplanctônica e producão primária na lagoa de Saquarema, Rio de Janeiro. Dissertacão de Mestrado em Geoquímica, Universidade Federal Fluminense, Niterói, 155 pp.Google Scholar
  8. Domingos, P., V. L. M. Huszar & J. P. Carmouze, 1994. Composition et biomasse du phytoplankton d'une lagune tropicale (Brésil) au cours d'une période marquée par une mortalité de poisson. Rev. Hydrobiol. trop. 27: 235–250.Google Scholar
  9. Edler, L. (ed.), 1979. Recommendations for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. 38p. (UNESCO), Working Group 11, Baltic Marine Biologists.Google Scholar
  10. Fenchel, T., 1982. Ecology of heterotrophic microflagellates. I. Some important forms and their functional morphology. Mar. Ecol. Prog. Ser. 8: 211–223.Google Scholar
  11. Holen, D. A. & M. E. Boraas, 1995. Mixotrophy in chrysophytes. In C. D. Sandgren, J. P. Smol & J. Kristiansen (eds), Chrysophyte algae: ecology, phylogeny and development. Cambridge University Press: 119–140.Google Scholar
  12. Huszar, V. L. M. & L. H. S. Silva, 1992. Estrutura das comunidades de quatro lagoas do litoral norte do Estado do Rio de Janeiro. Acta limnol. bras. 4: 291–314.Google Scholar
  13. Jones, H. L. J., 1997. A classification of mixotrophic protists based on their behavior. Freshwat. Biol. 37: 35–43.CrossRefGoogle Scholar
  14. Jones, R. I. & V. Ilmavirta, 1988. Flagellates in freshswater ecosystems – Concluding remarks. Hydrobiologia 161: 271–274.CrossRefGoogle Scholar
  15. Melack, J. M., 1979. Temporal variability of phytoplankton in tropical lakes. Oecologia 44: 1–7.CrossRefGoogle Scholar
  16. Menezes, M., 1994. Fitoflagelados pigmentados de quatro corpos d'água da região sul do Município do Rio de Janeiro, Estado do Rio de Janeiro, Brasil. Tese de Doutorado, Universidade de São Paulo, São Paulo. 2v, 701 pp.Google Scholar
  17. Menezes, M. & P. Domingos, 1994. La flore planctonique d'une lagune tropicale (Brésil). Rev. Hydrobiol. trop. 27: 273–297.Google Scholar
  18. OECD, 1992. Eutrophication of waters. Monitoring, assessment and control. OECD, Paris.Google Scholar
  19. Porter, K. G., 1988. Phagotrophic phytoflagellates in microbial food webs. Hydrobiologia 159: 89–97.Google Scholar
  20. Porter, K. G., 1990. Heterotrophic, autotrophic, and mixotrophic nanoflagellates: seasonal abundances and bactevory in a eutrophic lake. Limnol. Oceanogr. 35: 1821–1832.CrossRefGoogle Scholar
  21. Raven, J. A., 1995. Comparative aspects of chrysophyte nutrition with emphasis on carbon, phosphorous and nitrogen. In C. D. Sandgren, J. P. Smol & J. Kristiansen (eds), Chrysophyte algae: ecology, phylogeny and development. Cambridge University Press: 95–118.Google Scholar
  22. Reynolds, C. S., J. Padisák & I. Kóbor, 1994. A localized bloom of Dinobryon sociale in Lake Balaton: Some implications for the perception of patchiness and the maintenance of species richness. Abstracta Bot. 17: 251–260.Google Scholar
  23. Rojo, C. & M. Alvarez-Cobelas, 1993. Taxonomy and ecology of phytoplankton in a hypertrophic gravelpit lake II. Cryptophyceae, Euglenophyceae, Dinophyceae. Nova Hedwigia 57: 47–63.Google Scholar
  24. Romo, S. & R. Miracle, 1994. Population dynamics and ecology of subdominant phytoplankton species in a shallow hypertrophic lake (Albufera of Valencia, Spain). Hydrobiologia 273: 37–56.CrossRefGoogle Scholar
  25. Sokal, R. R. & F. J. Rohlf, 1981. Biometry. The principles and practice of statistics in Biological research. W.H. Freeman and Company, New York, 859 pp.Google Scholar
  26. Sommer, U., 1988. Some size relationships in phytoflagellate motility. Hydrobiologia 161: 125–131.CrossRefGoogle Scholar
  27. Steidinger, K. A. & K. Tangen, 1996. Dinoflagellates. In C. R. Tomas (ed.), Identifying Marine Diatoms and Dinoflagellates. Academic Press, California: 387–598.Google Scholar
  28. Throndsen, J., 1969. Flagellates of Norwegian coastal waters. Nytt. Mag. Bot. 16: 161–216.Google Scholar
  29. Throndsen, J., 1993. The planktonic marine flagellates. In C. R. Tomas (ed.), Marine Phytoplankton. A guide to naked flagellates and coccolithophorids. Academic Press, California: 1–145.Google Scholar
  30. Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitt. int. Ver. Limnol. 9: 1–38.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Patrícia Domingos
  • Mariângela Menezes

There are no affiliations available

Personalised recommendations