, Volume 422, Issue 0, pp 1–14 | Cite as

Sustaining living rivers

  • James R. Karr
  • Ellen W. Chu


Rivers cannot continue to meet society's needs, or the needs of living things, if humans continue to regard river management as a purely political or engineering challenge. The flow of rivers is part of a greater flow, the planet's water cycle, which sustains not only the flow of water but the entire web of life. Ultimately, the condition, or health, of the aquatic biota is the best means of understanding and controlling humans' impact on the Earth's watercourses and on the whole water cycle. Biological monitoring, especially multimetric approaches such as the index of biological integrity, acknowledges the importance of rivers' biotic integrity and offers one of the strongest available tools for diagnosing, minimizing, and preventing river degradation. The broad perspective offered by biological evaluations stands a better chance than narrow chemical criteria or conventional measures of urban development of sustaining living rivers.

biological integrity IBI rivers RIVPACS urban rivers water cycle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J. W., J. R. Karr & T. C. Dewberry, 1999. Evaluating Aquatic Resources in the Clackamas River Basin of Oregon. Report on Contract #CR825041–01, US Environmental Protection Agency, Corvallis, OR, USA.Google Scholar
  2. Armitage, P. D., D. Moss, J. F. Wright & M. T. Furse, 1983. The performance of new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running water sites. Wat. Res. 17: 333–347.Google Scholar
  3. Bradford, D. F., S. E. Franson, A. C. Neale, D. T. Heggem, G. R. Miller, & G. E. Canterbury, 1998. Bird species assemblages as indicators of biological integrity in Great Basin rangeland. Envir. Monit. Assess. 49: 1–22.Google Scholar
  4. Chovanec, A., V. Koller-Kreimel, O. Moog & S. Weiss, 1995. Assessment of the ecological integrity of running waters: the Austrian approach. Proceedings of International Workshop on Assessment and Classification of Rivers, 5–7 November 1995, Düsseldorf.Google Scholar
  5. Davis, W. S., 1995. Biological assessment and criteria: Building on the past. In Davis, W. S. & T. P. Simon (eds), Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Lewis, Boca Raton, FL: 15–29.Google Scholar
  6. Davis, W. S. & T. P. Simon (eds), 1995. Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Lewis, Boca Raton, FL.Google Scholar
  7. Davis, W. S., B. D. Snyder, J. B. Stribling & C. Stoughton, 1996. Summary of State Biological Assessment Programs for Streams and Rivers. EPA 230–R-96–007. Office of Policy, Planning, and Evaluation, US Environmental Protection Agency. Washington, DC.Google Scholar
  8. Falkenmark, M., 1997. Society's interaction with the water cycle: a conceptual framework for a more holistic approach. Hydrol. Sci. J. 42: 451–466.Google Scholar
  9. Forbes, S. A., 1928. The biological survey of a river system-its objects, methods and results. Illinois Nat. Hist. Survey Bull. 17: 277–284.Google Scholar
  10. Fore, L. S., K. Paulsen & K. O'Laughlin, in press. Statistical power of volunteer monitoring protocols. Freshwat. Biol.Google Scholar
  11. Ganasan, V. & R. M. Hughes, 1998. Application of an index of biological integrity (IBI) to fish assemblages of the rivers Khan and Kshipra (Madhya Pradesh), India Freshwat. Biol. 40: 367–383.Google Scholar
  12. Gutierrez, M. A. R., 1994. Utilizacion de la ictiofauna como indicadora de la integridad biotica de los Rios Gouche and Guanare, Estado Portuguesa, Venezuela. M.Sc. thesis, Universidad National Experimental de los Llanos Occidentales 'Ezequiel Zamora,' Guanare, Venezuela.Google Scholar
  13. Hellawell, J. M., 1986. Biological Indicators of Freshwater Pollution and Environmental Management. Elsevier, London.Google Scholar
  14. Hughes, R. M. & T. Oberdorff, 1999. Applications of IBI concepts and metrics to waters outside the United States. In Simon, T. P. (ed.), Assessing the Sustainability and Biological Integrity of Water Resources Using Fish Communities. CRC Press, Boca Raton, FL: 79–93.Google Scholar
  15. Hugueny, B., S. Camara, B. Samoura & M. Magassouba, 1996. Applying an index of biotic integrity based on fish assemblages in a West African river. Hydrobiologia 331: 71–78.Google Scholar
  16. Karr, J. R., 1981. Assessment of biotic integrity using fish communities. Fisheries 6(6): 21–27.Google Scholar
  17. Karr, J. R., 1991. Biological integrity: a long-neglected aspect of water resource management. Ecol. Appl. 1: 66–84.Google Scholar
  18. Karr, J. R., 1995. Clean water is not enough. Illahee 11: 51–59.Google Scholar
  19. Karr, J. R., 1998. Rivers as sentinels: using the biology of rivers to guide landscape management. In Naiman, R. J. & R. E. Bilby (eds), River Ecology and Management: Lessons from the Pacific Coastal Ecoregion. Springer, New York: 502–528.Google Scholar
  20. Karr, J. R. & E. W. Chu, 1999. Restoring Life in Running Waters: Better Biological Monitoring. Island Press, Washington, DC.Google Scholar
  21. Karr, J. R., K. D. Fausch, P. L. Angermeier, P. R. Yant & I. J. Schlosser, 1986. Assessment of biological integrity in running waters: a method and its rationale. Illinois Nat. Hist. Surv. Spec. Publ. 5.Google Scholar
  22. Karr, J. R., J. D. Allan & A. C. Benke, in press. River conservation in the United States and Canada: science, policy, and practice. In Boon, P. J., B. R. Davies & G. E. Petts (eds), River Conservation: Science, Policy, and Practice. John Wiley, Chichester, UK.Google Scholar
  23. Kofoid, C. A., 1903. The plankton of the Illinois River, 1894–1899, with introductory notes upon the hydrography of the Illinois River and its basin. Part I. Quantitative investigations and general results. Bull. Illinois State Lab. Nat. Hist. 8: 1–360.Google Scholar
  24. Kofoid, C. A., 1908. The plankton of the Illinois River, 1894–1899, with introductory notes upon the hydrography of the Illinois River and its basin. Part II. Constituent organisms and seasonal distribution. Bull. Illinois State Lab. Nat. Hist. 8: 1–360.Google Scholar
  25. Kolkwitz, R. & M. Marsson, 1908. Ökologie der pflanzlichen Saprobien. Bericht der Deutschen Botanischen Gesellschaft 26a: 505–519. (Translated 1967). Ecology of plant saprobia. In Kemp, L. E., W. M. Ingram & K. M. Mackenthum (eds), Biology of Water Pollution. Federal Water Pollution Control Administration, Washington, DC: 47–52.Google Scholar
  26. Lyons, J., S. Navarro-Perez, P. A. Cochran, E. Santana C. & M. Guzman-Arroyo, 1995. Index of biotic integrity based on fish assemblages for the conservation of streams and rivers in west-central Mexico. Conserv. Biol. 9: 569–584.Google Scholar
  27. Macdonald, S., 1999. Bishops see God in a river that's restored: letter calls Columbia sacred. Seattle Times, 2 May: B1, B4.Google Scholar
  28. May, C. W., R. R. Horner, J. R. Karr, B. W. Mar & E. B. Welch, 1997. Effects of urbanization on small streams in the Puget Sound lowland ecoregion. Watershed Protect. Tech. 2: 483–494.Google Scholar
  29. Miller, P. & D. Ehnes, in press. Can Canadian approaches to sustainable forest management maintain ecological integrity? In Pimentel, D., L. Westra & R. Noss (eds), Ecological Integrity in the World's Environment and Health. Island Press, Washington, DC.Google Scholar
  30. Moyle, P. & P. J. Randall, 1998. Evaluating the biotic integrity of watersheds in the Sierra Nevada, California. Conserv. Biol. 12: 1318–1326.Google Scholar
  31. Norris, R. H. & M. C. Thoms (eds), 1999. River Health. Freshwat. Biol. 41: 197–479.Google Scholar
  32. Norris, R. H., B. T. Hart, M. Finlayson & K. R. Norris (eds), 1995. Use of biota to assess water quality: an international conference. Aust. J. Ecol. 20(1): 1–227.Google Scholar
  33. Oberdorff, T. & J. P. Porcher, 1994. An index of biotic integrity to assess biological impacts of salmonid farm effluents on receiving waters. Aquaculture 119: 219–235.Google Scholar
  34. O'Meara, M., 1999. Exploring a new vision of cities. In State of the World 1999. Norton, New York: 133–150.Google Scholar
  35. Perry, J. & E. Vanderklein, 1996. Water Quality: Management of a Natural Resource. Blackwell Science, Cambridge, MA.Google Scholar
  36. Pielou, E. C., 1998. Fresh Water. University of Chicago Press, Chicago.Google Scholar
  37. Preston, F. W., 1962. The canonical distribution of commonness and rarity. Ecology 43: 185–215, 410–432.Google Scholar
  38. Reynoldson, T. B., R. C. Bailey, K. E. Day & R. H. Norris, 1995. Biological guidelines for freshwater sediment based on BEnthic Assessment of SedimenT (the BEAST) using a multivariate approach for predicting biological state. Aust. J. Ecol. 20: 198–219.Google Scholar
  39. Roesner, L. A. (ed.), 1997. Effects of Watershed Development and Management on Aquatic Ecosystems. Proceedings of an Engineering Foundation Conference. American Society of Civil Engineers, New York.Google Scholar
  40. Rosenberg, D. M. & V. H. Resh (eds), 1993. Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, NY.Google Scholar
  41. Rossano, E. M., 1996. Diagnosis of Stream Environments with Index of Biological Integrity (in Japanese and English). Museum of Streams and Lakes, Sankaido Publishers, Tokyo.Google Scholar
  42. Shrader-Frechette, K., 1995. Hard ecology, soft ecology, and ecosystem integrity. In Westra, L. & J. Lemons (eds), Perspectives on Ecological Integrity. Kluwer Academic Publishers, Dordrecht, The Netherlands: 125–145.Google Scholar
  43. Simon, T. P. (ed.), 1999. Assessing the Sustainability and Biological Integrity of Water Resources Using Fish Communities. CRC Press, Boca Raton, FL.Google Scholar
  44. Stoel, T. B., Jr., 1999. Reining in urban sprawl. Environment 41: 6–11, 29–33.Google Scholar
  45. Thomson, J. D., G. Weiblen, B. A. Thomson, S. Alfaro & P. Legendre, 1986. Untangling multiple factors in spatial distributions: lilies, gophers, and rocks. Ecology 77: 1698–1715.Google Scholar
  46. Thorne, R. St. J. & W. P. Williams, 1997. The response of benthic invertebrates to pollution in developing countries: a multimetric system of bioassessment. Freshwat. Biol. 37: 671–686.Google Scholar
  47. Wackernagel, M. & W. Rees, 1996. Our Ecological Footprint. New Society Press, Gabriola, BC.Google Scholar
  48. Wang, L., J. Lyons, P. Kanehl & R. Gatti, 1997. Influences of watershed land use on habitat quality and biotic integrity in Wisconsin streams. Fisheries 22(6): 6–12.Google Scholar
  49. Wright, J. F., D. Moss, P. D. Armitage & M. T. Furse, 1984. A preliminary classification of running-water sites in Great Britain based on macro-invertebrate species and the prediction of community type using environmental data. Freshwat. Biol. 14: 221–256.Google Scholar
  50. Wright, J. F., P. D. Armitage & M. T. Furse, 1989. Prediction of invertebrate communities using stream measurements. Regul. Rivers Res. Mgmt 4: 147–155.Google Scholar
  51. Wright, J. F., D. Moss, R. T. Clarke & M. T. Furse, 1997. Biological assessment of river quality using the new version of RIVPACS (RIVPACS III). In Boon, P. J. & D. L. Howell (eds), Freshwater Quality: Defining the Indefinable? Scottish Natural Heritage, Edinburgh: 102–108.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • James R. Karr
    • 1
  • Ellen W. Chu
    • 2
  1. 1.University of WashingtonSeattleU.S.A.
  2. 2.Northwest Environment WatchSeattleU.S.A.

Personalised recommendations