, Volume 395, Issue 0, pp 149–159 | Cite as

The importance of palaeolimnology to lake restoration

  • Richard W. Battarbee


Palaeolimnology has developed rapidly over the last two decades to deal with problems of eutrophication, and acidification. This paper reveiew the techniques for coring, dating and interpreting sediments. The applications of palaeolimnology in interpreting the past through ‘transfer functions’ calculated from biological indices are reviewed. Rates of change, the causes of change, and the restoration of lakes to some predefined target are reviewed and the direction of future developments considered.

sediment diatoms phosphorus acidification eutrophication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allott, T. E. H., R. Harriman & R.W. Battarbee, 1992. Reversibility of acidification at Round Loch of Glenhead, Galloway, Scotland. Envir. Pollut. 77: 219–225.Google Scholar
  2. Anderson, N. J. & R. W. Battarbee, 1994. Aquatic commmunity persistence and variability: a palaeolimnological perspective. In Giller, P. S. A. G. Hildrew, & D. Rafaelli (eds), Aquatic Ecology: Scale, Pattern and Processes. Blackwell Scientific Publications, Oxford.Google Scholar
  3. Anderson, N. J & B. Rippey, 1994. Monitoring lake recovery from point-source eutrophication: the use of diatom-inferred epilimnetic total phosphorus and sediment chemistry. Freshwat. Biol. 32: 625–39.Google Scholar
  4. Anderson, N. J., B. Rippey, & A. C. Stevenson, 1990. Change to a diatom assemblage in a eutrophic lake following point-source nutrient re-direction: a palaeolimnological approach. Freshwat. Biol. 23: 205–17.Google Scholar
  5. Appleby, P. G., P. J. Nolan, D.W. Gifford, M. J. Godfrey, F. Oldfield, R. W. Battarbee & N. J. Anderson, 1987. 210Pb dating by low background gamma counting. Hydrobiologia 143: 21–27Google Scholar
  6. Battarbee, R.W., 1978. Observations on the recent history of Lough Neagh and its drainage basin. Phil. Trans. r. Soc. London B 281: 303–345.Google Scholar
  7. Battarbee, R. W., 1984. Diatom analysis and the acidification of lakes. Phil. Trans. r. Soc. London B 305: 451–477.Google Scholar
  8. Battarbee, R.W., 1986. Diatom analysis. In B. E. Berglund (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley & Sons, Chichester: 527–570Google Scholar
  9. Battarbee, R.W., 1990. The causes of lake acidification, with special reference to the role of acid deposition. Phil. Trans. r. Soc. London B 281: 303–345.Google Scholar
  10. Battarbee, R.W., 1991. Recent palaeolimnology and diatom-derived environmental reconstruction. In L. C. Shane, & E. J. Cushing (eds), Quarternary Landscapes, University of Minnesota Press, Minneapoliis: 129–174Google Scholar
  11. Battarbee, R. W., 1993. Surface water acidification: evidence, effects and recovery. In N. Roberts (ed.), Global Environmental Change: Geographical Perspectives. Blackwell Scientific Publications, Oxford: 213–241Google Scholar
  12. Battarbee, R. W., 1997. Freshwater quality, naturalness and palaeolimnology. In P. J. Boon & D. L. Howell (eds), Freshwater Quality: Defining the Indefinable?, The Stationery Office, Edinburgh: 155–71.Google Scholar
  13. Battarbee, R. W. & T. E. H. Allott, 1993. Lake acidification: evidence, effects, management and reversibility. Mem. Ist. Ital. Idrobiol. 52: 319–40.Google Scholar
  14. Battarbee, R. W., R. J. Flower, A. C. Stevenson, & B. Rippey, 1985. Lake acidification in Galloway: a palaeoecological test of competing hypotheses. Nature 314: 350–352.Google Scholar
  15. Battarbee, R. W., N. J. Anderson, P. G. Appleby, R. J. Flower, S. C. Fritz, E. Y. Haworth, S. Higgitt, V. J. Jones, A. Kreiser, M. A. R. Munro, J. Natkanski, F. Oldfield, S.T. Patrick, N. G. Richardson, B. Rippey & A. C. Stevenson, 1988. Lake Acidification in the United Kingdom 1800–1986:Evidence from the Analysis of lake Sediments. London, Ensis.Google Scholar
  16. Battarbee, R. W., J. Mason, I. Renberg, & J. F. Talling (eds), 1990. Palaeolimnology and Lake Acidification. London, The Royal Society.Google Scholar
  17. Bennion, H., 1994. A diatom-derived phosphorus transfer function for shallow, eutrophic ponds in south-east England. Hydrobiologia 275/276: 391–410.Google Scholar
  18. Bennion, H., S. Wunsam & R. Schmidt, 1995. The validation of diatom-phosphorus transfer functions: an example from Mondsee, Austria. Freshwat. Biol. 34: 271–283.Google Scholar
  19. Bennion, H., S. Juggins & N. J. Anderson, 1996. Predicting epilimnetic phosphorus concentrations using an inproved diatombased transfer function, and its application to lake eutrophication management. Envir. Sci. Technol. 30: 2004–2007.Google Scholar
  20. Berdie, L., J. O. Grimalt, P. Fernandez, R. Vilanova, D. Pastor, R. Psenner, R. Hoffer, B. O. Rosseland, P. G. Appleby & R.W. Battarbee, submitted. Fractionation and cold trapping of airborne organochlorine compounds in high altitude lakes. Nature.Google Scholar
  21. Berglund, B. E. (ed.), 1986. Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley & Sons, Chichester.Google Scholar
  22. Birks, H. J. B., M. Line, S. Juggins, A. C. Stevenson, & C. J. F. ter Braak, 1990. Diatoms and pH reconstruction. Phil. Trans. r. Soc. London B 327: 263–278.Google Scholar
  23. Boyle, J. F., A. W. Mackay, N. L. Rose, R. J. Flower, P. G. Appleby & Granina (in press) Sediment heavy metal record in Lake Baikal: natural and anthropogenic sources. J. Paleolimnol. Cameron, N. G., 1995. The representation of diatom communities by fossil assemblages in a small acid lake. J. Paleolimnol. 14: 185–223.Google Scholar
  24. Cosby, B. J., R. F. Wright, G. M. Hornberger & J. N. Galloway, 1985. Modelling the effects of acidic deposition: assessment of a lumped-parameter model of soil and streamwater chemistry.Wat. Resources Res. 21: 51–63.Google Scholar
  25. Dixit, S. S., A. S. Dixt, & J. P. Smol, 1989. Lake acidification recovery can be monitored using chrysophycean microfossils. Can. J. Fish. aquat. Sci. 46: 1309–12.Google Scholar
  26. Flower, R. J. & R. W. Battarbee, 1983. Diatom evidence for recent acidification of two Scottish lochs. Nature 20: 130–33.Google Scholar
  27. Flower, R. J., R. W. Battarbee & P. G. Appleby, 1987. The recent palaeolimnology of acid lakes in Galloway, south-west Scotland: diatom analysis, pH trends and the role of afforestation. J. Ecol. 75: 797–824.Google Scholar
  28. Flower, R. J., S. Juggins & R.W. Battarbee, 1997. Matching diatom assemblages in lake sediment cores and modern surface sediment samples: the implications for conservation and restoration with special reference to acidificed system. Hydrobiologia 344: 27–40.Google Scholar
  29. Fritz, S. C., 1989. Lake development and limnological response to prehistoric and historic land use in Diss, Norfolk, UK. J. Ecol. 77: 182–202.Google Scholar
  30. Harriman, R. & B. R. S. Morrison, 1982. The ecology of streams draining forested and non-forested catchments in an area of central Scotland subject to acid precipitation. Hydrobiologia 88: 251–263.Google Scholar
  31. Jenkins, A., P. G. Whitehead, B. J. Cosby & H. J. B. Birks, 1990. Modelling long-term acidification: a comparison with diatom reconstructions and the implications for reversibility. Phil. Trans. r. Soc. London B 327: 209–214.Google Scholar
  32. Jenkins, A., M. Renshaw, R. Helliwell, C. Sefton, R. Ferrier & P. Swingewood, 1997. Modelling surface water acidification in the UK: an application of the MAGIC model to the Acid Waters Monitoring Network. IH Report No 131, Institute of Hydrology, U.K.Google Scholar
  33. Jones, V. J., R. W. Battarbee, N. L. Rose, C. Curtis, P. G. Appleby, R. Harriman, & A. J. Shine, 1997. Evidence for the pollution of Loch Ness from the analysis of its recent sediments. Sci. Tot. Envir. 203: 37–49.Google Scholar
  34. Juggins, S., R. J. Flower, & R. W. Battarbee, 1996. Palaeolimnological evidence for recent chemical and biological changes in UK Acid Waters Monitoring Network Sites. Freshwat. Biol. 36: 203–219.Google Scholar
  35. Moss, B., P. Johnes & G. Phillips, 1996. The monitoring of ecological quality and the classification of standing waters in temperate regions: a review and a proposal based on a worked scheme for Britsh waters. Biol. Rev. 71: 301–319.Google Scholar
  36. Moss, B., P. Johnes & G. Phillips, 1997. New approaches to monitoring and classifying standing waters. In P. J. Boon & D. L. Howell (eds), Freshwater Quality: Defining the Indefinable? The Stationery Office, Edinburgh: 118–133.Google Scholar
  37. Radcliffe, D. A., 1971. Criteria for the selection of nature reserves. Adv. Sci. 27: 294–296.Google Scholar
  38. Renberg, I., 1981. Improved methods for sampling, photographing and varve-counting of varved lake sediments. Boreas 10: 255– 258.Google Scholar
  39. Simola, H., I. Hanski & M. Luikkonen, 1990. Stratigraphy, species richness and seasonal dynamics of plankton diatoms during 418 years in Lake Lovojarvi, South Finland. Ann. Bot. Fenn. 27: 241–276.Google Scholar
  40. Smol, P., 1990. Palaeolimnology: recent advances and furture challenges. Mem. Ist. Idrobiol. 47: 253–276.Google Scholar
  41. Sullivan, T. J., B. J. Cosby, C. T. Driscoll, D. F. Charles, & H. Hemond, 1996. Influence of organic acids on model projections of lake acidification. Wat. Air Soil Pollut. 91: 271–282Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Richard W. Battarbee
    • 1
  1. 1.Environmental Change Research CentreUniversity College LondonLondonU.K

Personalised recommendations