Advertisement

Hydrobiologia

, Volume 387, Issue 0, pp 355–360 | Cite as

Carbon content of some freshwater rotifers

  • Irena V. Telesh
  • Minna Rahkola
  • Markku Viljanen
Article

Abstract

Carbon content of rotifers from 14 species ( Keratella cochlearis, K. c. tecta, K. c. hispida, K. ticinensis, K. quadrata, Polyarthra remata, P. vulgaris, P. major, P. euryptera, Synchaeta sp., S. stylata, S. pectinata, Trichocerca capucina, Asplanchna priodonta) was determined with the high temperature combustion method of Salonen (1979). Rotifers for the carbon analysis were collected from different fresh water bodies in Russia (Lake Ladoga) and Finland (lakes Pohjalampi, Varaslampi, and two small ponds in Lammi). Average individual carbon mass of rotifers varied between 0.0064 and 0.058 μg in Keratella spp., 0.012 and 0.051 μg in Polyarthra spp., 0.020 and 0.133 μg in Synchaeta spp., 0.162 and 0.555 μg in A. priodonta. The carbon level in the studied rotifer species differed 100-fold ranging from 0.31% WW in A. priodonta to 31.5% WW in K. c. tecta. Body length/carbon mass and body volume/carbon mass regressions were established for the studied rotifers.

Rotifers carbon content 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aasa, R., 1970. Plankton i Lilla Ullevifjarden. Nat. Swedish Environm. Protection Board, Limnol. Surv. Uppsala, Rep. 33: 1–62.Google Scholar
  2. Balushkina, E. V. & G. G. Winberg, 1979. Svyaz mezhdu massoi i dlinoi tela u planktonnykh zhivotnykh. /The relationship between mass and body length of the planktonic animals. In Winberg, G. G. (ed.), Obshchie osnovy izucheniya vodnykh ekosistem. Nauka, Leningrad: 169–172 (in Russian).Google Scholar
  3. Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norw. J. Zool. 24: 419–456.Google Scholar
  4. Dumont, H. J., I. Van de Velde & S. Dumont, 1975. The dry weight estimate of biomass and a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia (Berl) 19: 75–97.CrossRefGoogle Scholar
  5. Duncan, A., W. Lampert & O. Rocha, 1985. Carbon weight on length regressions of Daphnia spp. grown at threshold food concentrations. Verh. int. Verein. Limnol. 22: 3109–3115.Google Scholar
  6. Guisande, C., J. Toja & N. Mazuelos, 1991. The effect of food on protein content in rotifer and cladoceran species: a field correlational study. Freshwat. Biol. 26: 433–438.CrossRefGoogle Scholar
  7. Hessen, D. O. & A. Lyche, 1991. Inter-and intraspecific variations in zooplankton element composition. Arch. Hydrobiol. 121: 343–353.Google Scholar
  8. Latja, R. & K. Salonen, 1978. Carbon analysis for the determination of individual biomasses of planktonic animals. Verh. int. Ver. Limnol. 20: 2556–2560.Google Scholar
  9. Makarewich, J. C. & G. E. Likens, 1979. Structure and function of the zooplankton community in Mirror lake, New Hampshire. Ecol. Monogr. 49: 109–127.CrossRefGoogle Scholar
  10. McCauley, E., 1984. The estimation of abundance and the biomass of zooplankton in samples. In Downing, J. A. & F. H. Rigler, (eds), A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. Blackwell Scientific Publications, Boston: 228–265.Google Scholar
  11. Narita, T. & S. Mori, 1975. Secondary production of zooplankton. In Mori, S. & G. Yamamoto (eds), Productivity of Communities in Japanese Inland Waters. JIBP Synthesis 10: 22–25.Google Scholar
  12. Naulapaa, A., 1966. Eraiden Suomessa esiintyvien planktereiden tilavuuksien keskiarvoja. Mean volumes for some plankters found in Finland. Vesiensuojelutoimiston tiedonantoja 21: 1–26.Google Scholar
  13. Rahkola, M., J. Karjalainen & V. A. Avinsky, 1998. Individual weight estimates of zooplankton based on length-weight regressions in Lake Ladoga and Saimaa lake system. Nordic Journ. of Freshwater Research, in press.Google Scholar
  14. Ruttner-Kolisko, A., 1977. Suggestions for biomass calculation of planktonic rotifers. Arch. Hydrobiol. Beih. Ergebn. Limnol. 8: 71–76.Google Scholar
  15. Salonen, K., 1979. A versatile method for the rapid and accurate determination of carbon by high temperature combustion. Limnol. Oceanogr. 24: 177–187.Google Scholar
  16. Salonen, K., 1981. Rapid and precise determination of total inorganic carbon and some gases in aqueous solutions. Wat. Res. 15: 403–406.CrossRefGoogle Scholar
  17. Salonen, K. & J. Sarvala, 1980. The effect of different preservation methods on the carbon content of Megacyclops gigas. Hydrobiologia 72: 281–285.CrossRefGoogle Scholar
  18. Salonen, K. & R. Latja, 1988. Variation in the carbon content of two Asplanchna species. Hydrobiologia 162: 79–87.CrossRefGoogle Scholar
  19. Salonen, K., J. Sarvala, I. Hakala & M.-L. Viljanen, 1976. The relation of energy and organic carbon in aquatic invertebrates. Limnol. Oceanogr. 21: 724–730.CrossRefGoogle Scholar
  20. Sprules, W. G. & M. Munawar, 1991. Plankton community structure in Lake St. Clair, 1984. Hydrobiologia 219: 229–237.Google Scholar
  21. Sterner, R. W. & D. O. Hessen, 1994. Algal nutrient limitation and the nutrition of aquatic herbivores. Annu. Rev. Ecol. Syst. 25: 1–29.CrossRefGoogle Scholar
  22. Telesh, I. V., 1995. Rotifer assemblages in the Neva Bay, Russia: principles of formation, present state and perspectives. Hydrobiologia 313/314: 57–62.CrossRefGoogle Scholar
  23. Telesh, I. V., 1998. Species diversity and distribution of rotifers in Lake Ladoga, Russia. J. Boreal Environ. Res., in press.Google Scholar
  24. Vasama, A. & P. Kankaala, 1990. Carbon-length regressions of planktonic crustaceans in Lake Ala-Kitka (NE-Finland). Aqua Fenn. 20: 95–102.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Irena V. Telesh
    • 1
  • Minna Rahkola
    • 2
  • Markku Viljanen
    • 2
  1. 1.Zoological Institute of the Russian Academy of SciencesSt. PetersburgRussia
  2. 2.University of Joensuu, Karelian InstituteJoensuuFinland

Personalised recommendations