Earth, Moon, and Planets

, Volume 85, Issue 0, pp 291–302 | Cite as

Marine Animal Behaviour In Relation To Lunar Phase

  • E. Naylor


For marine invertebrate animals, in particular, examples are given of rhythmic patterns of locomotor, reproductive and moulting behaviour which are of lunar and semilunar periodicities. Some of these 29.5 and 14.8 day rhythms are shown to persist in constant conditions in the laboratory, indicative of internal biological clock control induced by intense adaptive selection pressure. In some cases phasing of the rhythms is directly by moonlight but, in other cases phasing is indirect, associated with lunar monthly variationsin the amplitude of ocean tides, that is the neap/spring cycle.


Selection Pressure Animal Behaviour Constant Condition Marine Animal Ocean Tide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alheit, J. and Naylor, E.: 1976, ‘Behavioural Basis of Intertidal Zonation in Eurydice pulchra Leach’, J. Exp. Mar. Biol. Ecol. 23, 135–144.Google Scholar
  2. Bentley, M. G., Olive, P. J.W., and Last, K.: 2001, ‘Sexual Satellites, Moonlight and Nuptial Dances of Worms: The Influence of the Moon on the Reproduction of Marine Animals’, Earth Moon Planets 85–86, 67–84.Google Scholar
  3. Bergin, M. E.: 1981, ‘Hatching Rhythms in Uca pugilator’, Mar. Biol. 63, 151–158.Google Scholar
  4. Caspers, H.: 1984, ‘Spawning Periodicity and Habitat of the Palolo Worm Eunice viridis in the Samoan Islands’, Mar. Biol. 79, 229–236.Google Scholar
  5. Chapin, J. P. and Wing, L. W.: 1959, ‘The Wideawake Calendar 1941–1958’, Auk 76, 153–158.Google Scholar
  6. Christy, J. H.: 1978, ‘Adaptive Significance of Reproductive Cycles in the Fiddler Crab Uca pugilator: A Hypothesis’, Science 199, 453–455.Google Scholar
  7. Clark, L. B. and Hess, H. W.: 1940, ‘Swarming of the Atlantic Palolo Worm, Leodice fucata’, Carnegie Publ. 524, 21–27.Google Scholar
  8. DeCoursey, P. J.: 1983, ‘Biological Timing’, in D. E. Bliss (ed.), The Biology of Crustacea, Vol. 7, Academic Press, New York, pp. 107–162.Google Scholar
  9. Dieleman, J.: 1979, ‘Swimming Rhythms, Migration and Breeding Cycles in the Estuarine Amphipods Gammarus chevreuxi and G. zaddachi’, in E. Naylor and R. G. Hartnoll (eds.), Cyclical Phenomena in Marine Plants and Animals, Pergamon Press, Oxford, pp. 415–422.Google Scholar
  10. Enright, J. T.: 1972, ‘A Virtuoso Isopod: Circa-Lunar Rhythms and their Fine Structure’, J. Comp. Physiol. 77, 141–162.Google Scholar
  11. Franke, H.-D.: 1986, ‘The Role of Light and Endogenous Factors in the Timing of the Reproductive Cycle of Typosyllis prolifera and Some Other Polychaetes’, Amer. Zool. 26, 433–445.Google Scholar
  12. Hastings, M. H.: 1981, ‘The Entraining Effect of Turbulence on the Circatidal Activity Rhythm and its Semi-Lunar Modulation in Eurydice pulchra’, J. Mar. Biol. Assoc. UK 61, 151–160.Google Scholar
  13. Hauenschild, C.: 1960, ‘Lunar Periodicity’, Biological Clocks. Cold Spring Harb. Symp. Quant. Biol. 25, 491–497.Google Scholar
  14. Hughes, R. N.: 1983, ‘Evolutionary Ecology of Reef-Organisms, with Particular Reference to Corals’, Biol. J. Linn. Soc. 20, 39–58.Google Scholar
  15. Jones, D. A. and Naylor, E.: 1970, ‘The Swimming Rhythm of the Sand Beach Isopod Eurydice pulchra’, J. Exp. Mar. Biol. Ecol. 4, 188–199.Google Scholar
  16. Kennedy, B. and Pearse, J. S.: 1975, ‘Lunar Synchronization of the Monthly Reproductive Rhythm in the Sea Urchin Centrostephanus coronatus Verrill’, J. Exp. Mar. Biol. Ecol. 17, 323–331.Google Scholar
  17. Klapow, L. A.: 1976, ‘Lunar and Tidal Rhythms of an Intertidal Crustacean’, in P. J. DeCoursey (ed.), Biological Rhythms in the Marine Environment, University of South Carolina Press, pp. 215–224.Google Scholar
  18. Kojis, B. L. and Quinn, N. J.: 1982, ‘Reproductive Ecology of Two Faviid Corals (Coelenterata: Scleratina)’, Mar. Ecol. Prog. Ser. 8, 251–255.Google Scholar
  19. Korringa, P.: 1957, ‘Lunar Periodicity’, Mem. Geol. Soc. Amer. 67, 917–934.Google Scholar
  20. Morgan, E.: 2001, ‘The Moon and Life on Earth’, Earth Moon Planets 85–86, 279–290.Google Scholar
  21. Naylor, E.: 1982, ‘Tidal and Lunar Rhythms in Animals and Plants’, in J. Brady (ed.), Biological Timekeeping. Soc. Exp. Biol. Seminar Ser. 14, Cambridge University Press, Cambridge, pp. 33–48.Google Scholar
  22. Naylor, E.: 1985, ‘Tidally Rhythmic Behaviour of Marine Animals’, Symp. Soc. Exp. Biol. 39, 63–93.Google Scholar
  23. Naylor, E.: 1989, ‘Temporal Aspects of Adaptation in the Behavioural Physiology of Marine Animals’, in R. Z. Klekowski, E. Styczynska-Jurewicz, and L. Falkowski (eds.), Proceedings of the 21st European Marine Biology Symposium, Polish Academy of Sciences, pp. 123–135.Google Scholar
  24. Naylor, E.: 1996, ‘Crab Clockwork: The Case for Interactive Circatidal and Circadian Oscillators Controlling Rhythmic Locomotor Activity of Carcinus maenas’, Chronobiol. Internat. 13, 153–161.Google Scholar
  25. Naylor, E.: 1997, ‘Crab Clocks Rewound’, Chronobiol. Internat. 14, 427–430.Google Scholar
  26. Naylor, E. and Williams, B. G.: 1984, ‘Environmental Entrainment of Tidally Rhythmic Behaviour in Marine Animals’, Zool. J. Linn. Soc. 80, 201–208.Google Scholar
  27. Neumann, D.: 1976, ‘Entrainment of a Semilunar Rhythm’, in P. J. DeCoursey (ed.), Biological Rhythms in the Marine Environment, University of South Carolina Press, pp. 115–127.Google Scholar
  28. Neumann, D.: 1987, ‘Tidal and Lunar Adaptations of Reproductive Activities in Invertebrate Species’, in L. Pevet (ed.), Comparative Physiology of Environmental Adaptations, III, Karger, Basel, pp. 152–170.Google Scholar
  29. Neumann, D.: 1965, ‘Photoperiodische Steuerung der 15-tagigen lunaren Metamorphose-Periodik von Clunio Population (Diptera: Chironomidae)’, Z. Naturforsch. 206, 818–819.Google Scholar
  30. Palmer, J. D.: 1971, ‘Comparative Studies of Circadian Locomotory Rhythms in Four Species of Terrestrial Crabs’, Amer. Midl. Nat. 85, 97–107.Google Scholar
  31. Palmer, J. D.: 1995, The Biological Rhythms and Clocks of Intertidal Animals, Oxford University Press, New York and Oxford, 217 pp.Google Scholar
  32. Pearse, J. A.: 1990, ‘Lunar Reproductive Rhythms in Marine Invertebrates: Maximizing Fertilization?’, in M. Hosin and O. Yamashita (eds.), Advances in Invertebrate Reproduction, Elsevier, Oxford, pp. 311–316.Google Scholar
  33. Reid, D. G. and Naylor, E.: 1985, ‘Free-Running, Endogenous Semilunar Rhythmicity in a Marine Isopod Crustacean’, J. Mar. Biol. Ass. UK 65, 85–91.Google Scholar
  34. Reid, D. G. and Naylor, E.: 1986, ‘An Entrainment Model for Semilunar Rhythmic Swimming behaviour in the Marine Isopod Eurydice pulchra (Leach)’, J. Exp. Mar. Biol. Ecol. 109, 25–35.Google Scholar
  35. Saigusa, M.: 1980, ‘Entrainment of a Semilunar Rhythm by Simulated Moonlight in the Terrestrial Crab’, Sesarma haematocheir. Oecologia 46, 38–44.Google Scholar
  36. Wheeler, D. E.: 1978, ‘Semilunar Hatching Periodicity in the Mud Fiddler Crab Uca pugnax’, Estuaries 1, 268–269.Google Scholar
  37. Williams, J. A.: 1979, ‘A Semilunar Rhythm of Locomotor Activity andMoult Synchrony in the Sand Beach Amphipod Talitrus saltator’, in E. Naylor and R. G. Hartnoll (eds.), Cyclical Phenomena in Marine Plants and Animals, Pergamon Press, Oxford, pp. 407–414.Google Scholar
  38. Zeng, C., Abello, P., and Naylor, E.: 1999, ‘Endogenous Tidal and Semilunar Moulting Rhythms in Early Juvenile Shore Crabs Carcinus maenas: Implications for Adaptation to a High Intertidal Habitat’, Mar. Ecol. Prog. Ser. 191, 257–266.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • E. Naylor
    • 1
  1. 1.School of Ocean SciencesUniversity of Wales-Bangor, Marine Science LaboratoriesAngleseyUK.

Personalised recommendations