, Volume 422, Issue 0, pp 305–317 | Cite as

Effects of residual flow and habitat fragmentation on distribution and movement of bullhead (Cottus gobio L.) in an alpine stream

  • Sabine Fischer
  • Helmut Kummer


The present study investigates the population structure and dynamics of Cottus gobio in three adjoining, hydrologically very different stream sections that are affected by water abstraction (residual flow). During the one-year investigation from October 1997 to September 1998 the selected stretches were repeatedly sampled by electrofishing. Multiple mark-recapture method was applied to determine fish density along the individual stretches and the individual marking technique (VI-tag) was used to record the migratory activity of individual fish. Stretches with intermittent flow (section A) are temporarily colonised by adult Cottus gobio from downstream sites only at higher water levels. These stretches are completely dry for about half of the year and do not enable populations to become established. Small populations persist in those transitional stretches that are intermittently isolated from other surface waters (section B). However, population size is less than one-quarter the size of those in directly adjoining downstream stretches with permanent water flow (section C). In addition, bullheads in section B have considerably poorer conditions. Changes in discharge led to increased migratory activity over the entire study area, whereby the radius of activity of the bullhead was largely (88%) restricted to distances of < 150 m. Elevated discharges mostly triggered upstream longitudinal and lateral dispersion. When the water drops to low water level and large areas in these sections dry out, the bullheads have to withdraw into deep pools. This might be the main reason for the lack of the probably less mobile juvenile stages. The results clearly demonstrate that habitat fragmentation resulting from water abstraction has drastic effects on all life stages of Cottus gobioin respect to habitat availability, spatial distribution, movement, fitness and survival. These effects can be seen at an extremely fine scale and are revealed in the significant differences in abundance and condition of Cottus gobiobetween the short (94 m–188 m) adjacent sections. In order to maintain and restore ecological integrity of running waters, the preservation of intact flow conditions is one of the key issues for river management.

abundance multiple capture-recapture method intermittent flow 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamicka, P., 1987. Nahrungsuntersuchungen an der Koppe (Cottus gobio L.) im Gebiet von Lunz. Österr. Fischerei 40: 8–10.Google Scholar
  2. Andreasson, S., 1971. Feeding habits of a sculpin (Cottus gobio L. Pisces) population. Rep. Inst. Freshwat. Res. Drottningholm 51: 5–30.Google Scholar
  3. Bagenal, T., 1978. Methods for assessment of fish production in fresh waters, 3rd edn. Blackwell Scientific Publications, Oxford, London, Edinburgh, Melbourne: 365 pp.Google Scholar
  4. Baran, P., M. Delacoste, F. Dauba, J. M. Lascaux, A. Belaud & S. Lek, 1995. Effects of reduced flow on brown trout (Salmo trutta L.) populations downstream dams in French Pyrenees. Regulated Rivers: Research & Management 10: 347–361.Google Scholar
  5. Barandun, J., 1990. Auswirkungen von Ausbreitungsbarrieren auf das Vorkommen von Groppen (Cottus gobio)-Anregungen für den Artenschutz. Nat. u. Landsch. 65: 66–68.Google Scholar
  6. Bless, R., 1981. Untersuchungen zum Einfluß von gewässerbaulichen Maßnahmen auf die Fischfauna in Mittelgebirgsbächen. Nat. u. Landsch. 56: 243–252.Google Scholar
  7. Bless, R., 1983. Untersuchungen zur Substratpräferenz der Groppe, Cottus gobio LINNAEUS. Senckenbergiana biol. 63: 161–165.Google Scholar
  8. Bless, R., 1990. Die Bedeutung von gewässerbaulichen Hindernissen im Raum-Zeit-System der Groppe (Cottus gobio L.). Nat. u. Landsch. 65: 581–585.Google Scholar
  9. Bless, R., 1997. Möglichkeiten und Grenzen der Zustandserfassung und Bewertung bei Populationen von Fischarten der FFH-Richtlinie. Nat. u. Landsch. 72: 496–498.Google Scholar
  10. Bretschko, G. & O. Moog, 1990. Downstream Effects of Intermittent Power Generation. Wat. Sci. Tech. 22: 127–135.Google Scholar
  11. Daniels, R. A., 1987. Comparative life histories and microhabitat use in three sympatric sculpins (Cottidae: Cottus) in northeastern California. Envir. Biol. Fishes 19: 93–110.Google Scholar
  12. Dynesius, M. & C. Nilsson, 1994. Fragmentation and flow regulation of river systems in the northern third of the world. Science 266: 753–762.Google Scholar
  13. Fischer, S., 1998. Verteilung und Wanderverhalten der Mühlkoppe (Cottus gobio L.) in einem astatischen Bachabschnitt. Biologische Station Lunz, Universität Salzburg: 71 pp.Google Scholar
  14. Gaudin, P. & L. Caillere, 1990. Microdistribution of Cottus gobio L. and fry of Salmo trutta L. in a first order stream. Pol. Arch. Hydrobiol. 37: 81–93.Google Scholar
  15. Gerking, S. D., 1958. The restricted movement of fish populations. Biol. Rev. 34: 221–242.Google Scholar
  16. Hofer, R. & F. Bucher, 1996. Die Koppe (Cottus gobio L.) als Indikator für Umweltbelastungen. Fischökologie 10: 47–62.Google Scholar
  17. Jungwirth, M., 1998. River continuum and fish migration-going beyond the longitudinal river corridor in understanding ecological integrity. In Jungwirth, M., S. Schmutz & S. Weiss (eds), Fish Migration and Fish Bypasses. Fishing News Books, Oxford: 19–32.Google Scholar
  18. Jungwirth, M., O. Moog & S. Schmutz, 1990. Auswirkungen der Veränderungen des Abflußregimes auf die Fisch-und Benthosfauna anhand von Fallbeispielen. Abt. für Hydrobiologie und Fischereiwirtschaft, Universität für Bodenkultur, Wien.Google Scholar
  19. Korolev, V. V., 1991. The common sculpin, Cottus gobio, of the Upper Pechora River Basin. J. Ichthyol. 31: 36–41.Google Scholar
  20. Maile, W., T. Heilmair & T. Strobl, 1995. Relationships between hydraulic and biological parameters in residual flow reaches as a basis for stipulating residual discharge levels. International Journal on Hydropower and Dams, Barcelona: 137–147.Google Scholar
  21. Marconato, A. & A. Bisazza, 1988. Mate choice, egg cannibalism and reproductive success in the river bullhead, Cottus gobio L. J. Fish Biol. 33: 905–916.Google Scholar
  22. McCleave, J. D., 1964. Movement and population of the mottled sculpin (Cottus bairdi Girard) in a small Montana stream. Copeia 3: 506–513.Google Scholar
  23. Mills, C. A. & R. H. K. Mann, 1983. The bullhead Cottus gobio, a versatile and successful fish. Rep. Freshwat. Biol. Ass. 51: 76–88.Google Scholar
  24. Moog, O. & M. Jungwirth, 1993. Berücksichtigung ökologischer Gesichtspunkte bei der Wasserkraftnutzung durch Ausleitungskraftwerke-Kurzfassung. Österreichische Wasserwirtschaft Jg. 45, Heft 7/8.Google Scholar
  25. Orság, L. & M. Zelinka, 1974. Zur Nahrung der Arten Cottus poecilopus Heck. und Cottus gobio L. Zool. Listy 23: 185–196.Google Scholar
  26. Peter, A., 1998. Interruption of the river continuum by barrriers and the consequences for migratory fish. In M. Jungwirth, S. Schmutz & S. Weiss, Fish Migration and Fish Bypasses. Fishing News Books, Oxford: 99–112.Google Scholar
  27. Roth, C. & J. Utzinger, 1993. Ökologie der Groppe (Cottus gobio L.) und deren Eignung als Indikatorfisch für den chemischen und morphologischen Zustand eines Fließgewässersystems. Diplomarbeit, Abt. für Umweltnaturwissenschaften XB, ETH-Zürich (unveröffentlicht): 138 pp.Google Scholar
  28. Roussel, J. M. & A. Bardonnet, 1996. Changements d'habitat de la truite (Salmo trutta) et du chabot (Cottus gobio) au cours du nycthémère. Approches multivariées a différentes échelles spatiales. Cybium 20: 43–53.Google Scholar
  29. Sale, M. J. & R. G. Otto, 1991. Improving the assessment of instream flow needs for fish populations. Waterpower 91, 1: 76–84.Google Scholar
  30. Seber, G. A. F., 1965. A note on the multiple-recapture census. Biometrika 52: 249–259.Google Scholar
  31. Smith, R. J. F., 1985. The control of fish migration. Springer Verlag, Berlin.Google Scholar
  32. Smyly, W. J. P., 1957. The life-history of the bullhead or miller's thumb (Cottus gobio L.). Proc. zool. Soc. Lond. 128: 431–453.Google Scholar
  33. Späh, H. & W. Beisenherz, 1986. Wiederbesiedlung von Forellenbächen. Erfolgreiche Versuche mit Groppen. Mitteilungen LÖLF 3: 28–34.Google Scholar
  34. Stahlberg-Meinhardt, S., 1994. Verteilung, Habitatansprüche und Bewegungen von Mühlkoppe (Cottus gobio L.) und Bachforelle (Salmo trutta L.) in zwei unterschiedlich anthropogen beein-flußten Fließgewässern im Vorharz. Dissertation, Zoologisches Institut der Technischen Universität Braunschweig (unveröffentlicht): 197 pp.Google Scholar
  35. Waidbacher, H. & G. Haidvogl, 1998. Fish migration and fish passage facilities in the Danube: past and present. In Jungwirth, M., S. Schmutz & S. Weiss (eds), Fish Migration and Fish Bypasses. Fishing News Books, Oxford: 85–98.Google Scholar
  36. Waterstraat, A., 1992. Populationsökologische Untersuchungen an Cottus gobio L. und anderen Fischarten aus zwei Flachlandbächen Norddeutschlands. Limnologica 22: 137–149.Google Scholar
  37. Welton, J. S., C. A. Mills & E. L. Rendle, 1983. Food and habitat partitioning in two small benthic fishes, Noemacheilus barbatulus L. and Cottus gobio L. Arch. Hydrobiol. 97: 434–454.Google Scholar
  38. Williams, J. G., 1998. Fish passage in the Columbia River, USA and its tributaries: problems and solution. In Jungwirth, M., S. Schmutz & S. Weiss (eds), Fish Migration and Fish Bypasses. Fishing News Books, Oxford: 180–191.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Sabine Fischer
    • 1
  • Helmut Kummer
    • 2
  1. 1.Biological Station LunzAustrian Academy of SciencesLunz/SeeAustria
  2. 2.Department of Hydrobiology, Fisheries and AquacultureUniversity of Agricultural SciencesViennaAustria

Personalised recommendations