Earth, Moon, and Planets

, Volume 82, Issue 0, pp 149–166 | Cite as

Predicting the Strength of Leonid Outbursts

  • Esko J. Lyytinen
  • Tom Van Flandern


A simple model is described that predicts the time of occurrences and peak activity of Leonid shower outbursts. It is assumed that the ejection speeds of escaping particles at each return of the parent comet near perihelion are very small, but solar radiation pressure acting differently on different particles causing a spread of particles into different period orbits. Earlier papers predicted the position of the resulting dust trails. This paper sets forth to better predict the strength of the expected outbursts by considering the role of non-isotropic effects in the interaction with the solar radiation on the dispersion of particles away from the dust trail center. This paper determines the approximate magnitude of the relevant effects. Predictions for the next few years are presented that include such considerations, for reasonable assumptions of particle properties. For example, earlier predictions for the 1999 storm of ZHR = 6,000−7,000 are now reduced by a factor of two, which is in better agreement with the observed ZHR ∼ 4,000. The success of the technique, when applied to historic meteor storms and outbursts without need of additional free parameters, lends confidence to the soundness of the underlying model and to its application for future predictions. We predict that the best encounters of this return of the parent-comet will occur in the years 2001 and 2002.

Comet comet ejection Leonids meteor meteor shower meteoroid model predictions orbital dynamics radiation pressure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arlt, R., Bellot Rubio, L., Brown, P., and Gyssens, M.: 1999, WGN, Journal of the IMO 27, 286–295.Google Scholar
  2. Brown, P.: 1999, Icarus 138, 287–308.Google Scholar
  3. Jenniskens, P.: 1995, Astron. Astrophys. 295, 206–235.Google Scholar
  4. Jenniskens, P., Crawford, C., Butow, S., Nugent, D., Koop, M., Holman, D., Houston, K., Kronk, G., and Beatty, K.: 2000. Earth, Moon and Planets, 82–83, 191–208.Google Scholar
  5. Kondrat'eva, E. D. and Reznikov, E. A.: 1985, Sol. Syst. Res. 19, 96–101.Google Scholar
  6. Kondrat'eva, E. D., Murav'eve, I. N., and Reznikov, E. D.: 1997, Sol. Syst. Res. 31, 489–492.Google Scholar
  7. Kresak, L.: 1976, Bull. Astron. Inst. of Czechoslovakia 27, 35–46.Google Scholar
  8. Lyytinen, E.: 1999, Meta Research Bulletin 8, 33–40.Google Scholar
  9. Mason, J.W.: 1995, Journal of The British Astronomical association 105, 219–235.Google Scholar
  10. McNaught, R.H. and Asher, D.J.: 1999a, WGN, Journal of the IMO 27, 85–102.Google Scholar
  11. McNaught, R.H. and Asher, D.J.: 1999b, Meteoritics Planet. Sci. 34, 975–978.Google Scholar
  12. Nakano, S.: 1998, Minor Planet Circular 31070Google Scholar
  13. Olsson-Steel, D.: 1987, MNRAS 226, 1–17.Google Scholar
  14. Pavel, M.: 1955, J. Atmos. Terr. Phys. 2, 168–177.Google Scholar
  15. Rubincam, D. P.: 1995, J. Geophys. Res. 100, E1, 1585–1594.Google Scholar
  16. Van Flandern, T.: 1981, Icarus 47, 480–486.Google Scholar
  17. Van Flandern, T.: 1999, Dark Matter Missing Planets & New Comets, North Atlantic Books, Berkeley, CA, 2nd edition, chapter 10.Google Scholar
  18. Vokrouhlicky, D. and Broz, M.: 1999, Astron. Astrophys. 350, 1079–1084.Google Scholar
  19. Yeomans, D.K., Yau, K.K., and Weissman, P.R.: 1996: Icarus 124, 407–413.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Esko J. Lyytinen
    • 1
  • Tom Van Flandern
    • 2
  1. 1.Kehäkukantie 3HelsinkiFinland
  2. 2.Meta ResearchWashington, DCUSA

Personalised recommendations