Advertisement

Earth, Moon, and Planets

, Volume 85, Issue 0, pp 87–97 | Cite as

Fantastic New Chondrites, Achondrites, And Lunar Meteorites As The Result Of Recent Meteorite Search Expeditions In Hot And Cold Deserts

  • Addi Bischoff
Article

Abstract

In the last 25 years thousands of new meteorites were recovered in the “cold deserts” of Antarctica and in the hot deserts of Australia, New Mexico, North Africa, and Oman. Based on the findings of many spectacular samples new meteorite classes could be defined. Considering the undifferentiated chondrites, the new class of the Rumuruti (R-) chondrites was established and the carbonaceous chondrites gained three more subgroups (CR-, CH-, and CK-chondrites). Also, among the achondrites new meteorite classes were defined inrecent years (angrites, brachinites, and the primitive achondrite classes of acapulcoites, winonaites, and lodranites). Certainly, the most spectacular discovery among the cold and hot desert meteorites was the recognition of the Lunar meteorites. In addition, the number of Martian meteorites has been significantly increased based on successful meteorite search.

Among the thousands of meteorite fragments mainly collected by American and Japanese expeditions in Antarctica the first lunar meteorite ALHA81005 was identified in 1982. ALHA81005 is a highland breccia like several other samples that were collected in Antarctica in the following years. The first lunar meteorite found outside Antarctica is Calcalong Creek (Australia), a small 19 g sample. In recent years several lunar meteorites were found in North Africa and Oman. The first lunar sample recovered from the northern hemisphere is Dar al Gani 262, a 513 g fragment found March 1997 in the Sahara. It was the 13th lunar meteorite. Since 1997 some more rocks from the Moon were collected: Dar al Gani 400, Yamato 981031, Dhofar 025, 026 and 071, and Northwest Africa 032 and 482. Dhofar 071 contains high abundance of once-molten fragments and interstitial fine-grained (devitrified) material.

Keywords

Northern Hemisphere High Abundance Breccia Oman Carbonaceous Chondrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benedix, G. K., McCoy, T. J., Keil, K., Bogard, D. D., and Garrison, D. H.: 1998, ‘A Petrologic and Isotopic Study of Winonaites: Evidence for Early Partial Melting, Brecciation, and Metamorphism’, Geochim. Cosmochim. Acta 62, 2535–2553.Google Scholar
  2. Bischoff, A.: 1996, ‘Lunar Meteorite QUE93069: A Lunar Highland Regolith Breccia with Very Low Abundances of Mafic Components’, Meteoritics 31, 849–855.Google Scholar
  3. Bischoff, A.: 2000, ‘Mineralogical Characterization of Primitive, Type 3 Lithologies in Rumuruti Chondrites’, Meteorit. Planet. Sci. 35, 699–706.Google Scholar
  4. Bischoff, A.: 2001, ‘Meteorite Classification and the Definition of New Chondrite Classes as a Result of Successful Meteorite Search in Hot and Cold Deserts’, Planet. Space Sci. 49, 769–776.Google Scholar
  5. Bischoff, A. and Geiger, T.: 1995, ‘Meteorites from the Sahara: Find Locations, Shock Classification, Degree of Weathering, and Pairing’, Meteoritics 30, 113–122.Google Scholar
  6. Bischoff, A. and Weber, D.: 1997, ‘Dar al Gani 262: The First Lunar Meteorite from the Sahara’, Meteorit. Planet. Sci. 32, A13–A14 (Abstract).Google Scholar
  7. Bischoff, A., Geiger, T., Palme, H., Spettel, B., Schultz, L., Scherer, P., Bland, P., Clayton, R. N., Mayeda, T. K., Herpers, U., Michel, R., and Dittrich-Hannen, B.: 1994, ‘Acfer 217 – A New Member of the Rumuruti Chondrite Group (R)’, Meteoritics 29, 264–274.Google Scholar
  8. Bischoff, A., Palme, H., Ash, R. D., Clayton, R. N., Schultz, L., Herpers, U., Stöffler, D., Grady, M. M., Pillinger, C. T., Spettel, B., Weber, H., Grund, T., Endreß, M., and Weber, D.: 1993a, ‘Paired Renazzo-type (CR) Carbonaceous Chondrites from the Sahara’, Geochim. Cosmochim. Acta 57, 1587–1604.Google Scholar
  9. Bischoff, A., Palme, H., Schultz, L., Weber, D., Weber, H. W., and Spettel, B.: 1993b, ‘Acfer 182 and Paired Samples, an Iron-Rich Carbonaceous Chondrite: Similarities with ALH85085 and Relationship to CR Chondrites’, Geochim. Cosmochim. Acta 57, 2631–2648.Google Scholar
  10. Bischoff, A., Palme, H., Weber, H. W., Stöffler, D., Braun, O., Spettel, B., Begemann, F., Wänke, H., and Ostertag, R.: 1987, ‘Petrography, Shock History, Chemical Composition and Noble Gas Content of the Lunar Meteorites Y-82192 and Y-82193’, Mem. Natl. Inst. Polar Res., Special Issue, 46, 21–42.Google Scholar
  11. Bischoff, A., Weber, D., Clayton, R. N., Faestermann, T., Franchi, I. A., Herpers, U., Knie, K., Korschinek, G., Kubik, P. W., Mayeda, T. K., Merchel, S., Michel, R., Neumann, S., Palme, H., Pillinger, C. T., Schultz, L., Sexton, A. S., Spettel, B., Verchovsky, A. B., Weber, H. W., Weckwerth, G., and Wolf, D.: 1998, ‘Petrology, Chemistry, and Isotopic Compositions of the Lunar Highland Regolith Breccia Dar al Gani 262’, Meteorit. Planet. Sci. 33, 1243–1257.Google Scholar
  12. Clayton, R. N. and Mayeda, T. K.: 1996, ‘Oxygen Isotope Studies of Achondrites’, Geochim. Cosmochim. Acta 60, 1999–2017.Google Scholar
  13. Clayton, R. N. and Mayeda, T. K.: 1999, ‘Oxygen Isotope Studies of Carbonaceous Chondrites’, Geochim. Cosmochim. Acta 63, 2089–2104.Google Scholar
  14. Geiger, T. and Bischoff, A.: 1990, ‘The Metamorphosed Carbonaceous Chondrites – A New Chondrite Group?’, in 15th Symposium on Antarctic Meteorology, Tokyo, Japan, Natl. Inst. Polar Res., Tokyo, pp. 77–80.Google Scholar
  15. Graham, A. L., Bevan, A.W. R., and Hutchison, R.: 1985, Catalogue of Meteorites, British Museum of Natural History, London, 460 pp.Google Scholar
  16. Grossman, J. N.: 2000, ‘The Meteoritial Bulletin, No. 84, 2000 August’, Meteorit. Planet. Sci. 35, A199–A225.Google Scholar
  17. Grossman, J. N.: 2001, ‘The Meteoritial Bulletin, No. 85, 2001 July’, Meteorit. Planet. Sci. 36 (in preparation).Google Scholar
  18. Hill, D. H., Boynton, W. V., and Haag, R. A.: 1991, ‘A Lunar Meteorite Found outside the Antarctic’, Nature 352, 614–617.Google Scholar
  19. Kallemeyn, G. W.: 1988, ‘Metamorphosed Carbonaceous Chondrites’, Meteoritics 23, 278.Google Scholar
  20. Kallemeyn, G. W., Rubin, A. E., and Wasson, J. T.: 1991, ‘The Compositional Classification of Chondrites: V. The Karoonda (CK) Group of Carbonaceous Chondrites’, Geochim. Cosmochim. Acta 55, 881–892.Google Scholar
  21. Kallemeyn, G. W., Rubin, A. E., and Wasson, J. T.: 1994, ‘The Compositional Classification of Chondrites: VI. The CR Carbonaceous Chondrite Group’, Geochim. Cosmochim. Acta 58, 2873–2888.Google Scholar
  22. Kallemeyn, G. W., Rubin, A. E., and Wasson, J. T.: 1996, ‘The Compositional Classification of Chondrites: VII. The R Chondrite Group’, Geochim. Cosmochim. Acta 60, 2243–2256.Google Scholar
  23. Kimura, M., Tsuchiyama, A., Fukuoka, T., and Iimura, Y., 1992, ‘Antarctic Primitive Achondrites, Yamato-74025,-75300, and-75305: Their Mineralogy, Thermal History, and the Relevance to Winonaite’, in Proceedings of the NIPR Symposium on Antarctic Meteorites 5, pp. 165–190.Google Scholar
  24. Kojima, H. and Imae, N.: 2000, Meteorite News 9, No. 1, Natl. Inst. Polar Res., Tokyo.Google Scholar
  25. McCoy, T. J., Keil, K., Clayton, R. N., Mayeda, T. K., Bogard, D. D., Garrison, D. H., Huss, G. R., Hutchison, I. D., and Wieler, R.: 1996, ‘A Petrologic, Chemical, and Isotopic Study of Monument Draw and Comparison with Other Acapulcoites: Evidence for Formation by Incipient Partial Melting’, Geochim. Cosmochim. Acta 60, 2681–2708.Google Scholar
  26. McCoy, T. J., Keil, K., Clayton, R. N., Mayeda, T. K., Bogard, D. D., Garrison, D. H., and Wieler, R.: 1997, ‘A Petrologic and Isotopic Study of Lodranites: Evidence for Early Formation as Partial Melt Residues from Heterogeneous Precursors’, Geochim. Cosmochim. Acta 61, 623–637.Google Scholar
  27. McCoy, T. J., Keil, K., Mayeda, T. K., and Clayton, R. T.: 1993, ‘Classificational Parameters for Acapulcoites and Lodranites: The Cases of FRO90011, EET84303 and ALH81186 and 84190’, Lunar Planet. Sci. XXIV, 945–946.Google Scholar
  28. Mittlefehldt, D. W., Lindstrom, M. M., Bogard, D. D., Garrison, D. H., and Field, S. W.: 1996, ‘Acapulco-and Lodran-Like Achondrites: Petrology, Geochemistry, Chronology, and Origin’, Geochim. Cosmochim. Acta 60, 867–882.Google Scholar
  29. Mittlefehldt, D.W., McCoy, T. J., Goodrich, C. A., and Kracher, A.: 1998, in J. J. Papike (ed.), ‘Nonchondritic Meteorites from Asteroidal Bodies. Chapter 4 in “Planetary Materials – Reviews in Mineralogy, Vol. 36”’, Mineralogical Society of America, 4-1–4-195.Google Scholar
  30. Nehru, C. E., Prinz, M., Weisberg, M. K., Ebihara, M. E., Clayton, R. N., and Mayeda, T. K.: 1992, ‘Brachinites: A New Primitive Achondrite Group’, Meteoritics 27, 267.Google Scholar
  31. Otto, J.: 1992, ‘New Meteorite Finds from the Algerian Sahara Desert’, Chem. Erde 52, 33–40.Google Scholar
  32. Rubin A. E. and Kallemeyn, G. W.: 1994, ‘Pecora Escarpment 91002: A New Chondrite Related to Rumuruti’, Meteoritics 29, 255–264.Google Scholar
  33. Schulze, H., Bischoff, A., Palme, H., Spettel, B., Dreibus, G., and Otto, J.: 1994, ‘Mineralogy and Chemistry of Rumuruti: The First Meteorite Fall of the New R Chondrite Group’, Meteoritics 29, 275-286.Google Scholar
  34. Score, R. and Mason, B.: 1982, ‘ALHA81105’, Antarct. Meteorite Newsl. 5, 4.Google Scholar
  35. Takeda, H., Mori, H., Hiroi, T., and Saito, J.: 1994, ‘Mineralogy of New Antarctic Achondrites with Affinity to Lodran and a Model of their Evolution in an Asteroid’, Meteoritics 29, 830–842.Google Scholar
  36. Weisberg, M. K., Prinz, M., Clayton, R. N., and Mayeda, T. K.: 1993, ‘The CR (Renazzo-type) Carbonaceous Chondrite Group and its Implications’, Geochim. Cosmochim. Acta 57, 1567–1586.Google Scholar
  37. Weisberg, M. K., Prinz, M., Clayton, R. N., Mayeda, T. K., Grady, M. M., Franchi, I., Pillinger, C. T., and Kallemeyn G.W.: 1996, ‘The K (Kakangari) Chondrite Grouplet’, Geochim. Cosmochim. Acta 60, 4253–4263.Google Scholar
  38. Weisberg, M. K., Prinz, M., Clayton, R. N., Mayeda, T. K., Sugiura, N., and Zashu, S.: 1998, ‘The Bencubbinite (B) Group of the CR Clan’, Meteorit. Planet. Sci. 33, A166.Google Scholar
  39. Weisberg, M. K., Prinz, M., Kojima, H., Yanai, K., Clayton, R. N., and Mayeda, T. K.: 1991, ‘The Carlisle Lakes-Type Chondrites: A New Grouplet with High Delta-17O and Evidence for Nebular Oxidation’, Geochim. Cosmochim. Acta 55, 2657–2669.Google Scholar
  40. Zipfel, J., Palme, H., Kennedy, A. K., and Hutcheon, I. D.: 1995, ‘Chemical Composition and Origin of the Acapulco Meteorite’, Geochim. Cosmochim. Acta 59, 3607–3627.Google Scholar
  41. Zipfel, J., Spettel, B., Palme, H., Wolf, D., Franchi, I., Sexton, A. S., Pillinger, C. T., and Bischoff, A.: 1998, ‘Dar al Gani 400, Chemistry and Petrology of the Largest Lunar Meteorite’, Meteorit. Planet. Sci. 33, A171.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Addi Bischoff
    • 1
  1. 1.Institut für Planetologie/ICEMWestfälische Wilhelms-Universität MünsterMünsterGermany.

Personalised recommendations