Advertisement

Hydrobiologia

, Volume 342, Issue 0, pp 151–164 | Cite as

Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth

  • Erik Jeppesen
  • Jens Peder Jensen
  • Martin Søndergaard
  • Torben Lauridsen
  • Leif Junge Pedersen
  • Lars Jensen
Article

Abstract

Based on data from 233 Danish lakes, enclosure experiments, full-scaleexperiments and published empirical models we present evidence that top-downcontrol is more important in shallow lakes than in deep lakes, excepting lakeswith a high abundance of submerged macrophytes. The evidence in support is: (1)That at a given epilimnion total phosphorus concentration (TP) the biomass offish per m2 is independent of depth, which means that biomassper m3is markedly higher in shallow lakes. (2) That the biomass of benthic invertebratesis higher in shallow lakes, which means that the benthi-planktivorous fish areless dependent on zooplankton prey than in deep lakes. By their ability to shiftto zooplankton predation their density can remain high even in periods whenzooplankton is scarce and they can thereby maintain a potentially high predationpressure on zooplankton. (3) That the possibilities of cladocerans to escapepredation by vertical migration are less. (4) That the zooplankton:phytoplanktonmass ratio per m2 is lower and presumably then also thegrazing pressure onphytoplankton. (5) That nutrient constraints appear to be weaker, as evidenced bythe fact that at a given annual mean TP, summer TP is considerably higher inshallow lakes, especially in eutrophic lakes lacking submerged macrophytes. (6)That negative feedback on cladocerans by cyanobacteria is lower as cyanobacterialdominance is less frequent in shallow lakes and more easily broken (at least inNorthern temperate lakes), and (7) That top-down control by benthi-planktivorousfish is markedly reduced in lakes rich in submerged macrophytes because theplants serve as a refuge for pelagic cladocerans and encouragepredatory fish at the expense of prey fish. We conclude that manipulation of fishand submerged macrophytes may have substantial impact on lake ecosystems, inparticular in shallow eutrophic lakes. On the contrary, if the conditions formore permanent changes in plant abundance or fish community structure are lackingthe feed-back mechanisms that endeavour a return to the original turbid state willbe particularly strong in shallow lakes.

top-down control shallow lakes trophic structure trophic cascade macrophytes zooplankton fish biomanipulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arndt, H., 1993. Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates)–a review. Hydrobiologia 155/256: 231–246.Google Scholar
  2. Arruda, J.,A., G. R. Marzolf & R. T. Faulk, 1983. The role of suspended sediments in the nutrition of zooplankton in turbid reservoirs. Ecology 65: 1225–1235.Google Scholar
  3. Barica, J., 1975. Collapses of algal blooms in prairie pothole lakes: Their mechanisms and ecological impact. Verh. int. Ver. Limnol. 19: 606–615.Google Scholar
  4. Benndorf, J., 1987. Food web manipulation without nutrient control: A useful strategy in lake restoration? Schweiz. Z. Hydrol. 49: 237–248.Google Scholar
  5. Benndorf, J., H. Schultz, A. Benndorf, R. Unger, E. Penze, H. Kneschke, K. Kossatrz, R. Dumke, U. Hornic, R. Kruspe & S. Reichels, 1988. Food-web manipulation by enhancement of piscivorous fish stocks: Long-term effects in the hypertrophic Bautzen Reservoir. Limnologica 19: 97–110.Google Scholar
  6. Berg, S., E. Jeppesen & M. Søndergaard, 1997. Pike (Esox lucius L.) stocking as a biomanipulation tool. 1. Effects on the fish population in Lake Lyng (Denmark). Hydrobiologia 342/343: 311–318.Google Scholar
  7. Bernardi, R. de & G. Guisanni, 1990. Are blue-green algae suitable food for zooplankton? An overview. Hydrobiologia 200/201: 29–41.Google Scholar
  8. Bogdan, K. G. & J. J. Gilbert, 1984. Body size and food size in freshwater zooplankton. Proc. natn. Acad. Sci. U.S.A. 81: 6427–6431.Google Scholar
  9. Breukelaar, A. W., E. H. R. Lammens, J. P. G. Klein Breteler & I. Tatrai, 1994. Effects of benthivorous bream (Abramis brama L.) and carp (Cyprinus caprioL.) on sediment resuspension and concentration of nutrients and chlorophyll a. Freshwat. Biol. 32: 113–121.Google Scholar
  10. Brøgger-Jensen, S. & H. E. Jørgensen, 1992. Vandfugle og søers miljøtilstand [The environmental state of waterfowl and lakes]. Miljøprojekt nr. 200. Danish Environmental Protecton Agency, Copenhagen, 64 pp.Google Scholar
  11. Canfield, D E., J. V. Shireman, D. E. Colle, W. T. Haller, C. E. Watkins, & M. J. Maceina, 1984. Prediction of chlorophyil a concentrations in Florida lakes: Importance of aquatic macrophytes. Can. J. Fish. aquat. Sci. 44: 497–501.Google Scholar
  12. Carvalho, L., 1990. Top-down control of phytoplankton in a shallow hypertrophic lake: Little Mere (England). Hydrobiologia 200/201: 53–64.Google Scholar
  13. Crowder, L. B. & W. E. Cooper, 1979. Structural complexity and fish-prey interactions in ponds: A point of view. In Johnson, D. L. & R. A. Stein (eds), Response of fish to habitat structure in standing water. North Central Division. Am. Fish. Soc. Spec. Pub. 6: 1–10.Google Scholar
  14. Cryer, M., G. Pierson & C. R. Townsend, 1986. Reciprocal interactions between roach Rutilus rutilus, and zooplankton in a small lake: Prey dynamics and fish growth and recruitment. Limnol. Oceanogr. 31: 1022–1038.Google Scholar
  15. De Meester, L., 1993. Genotype, fish-mediated chemicals, and planktonic behaviour in Daphnia magna. Ecology 74: 1467–1474.Google Scholar
  16. De Melo, R., R. France & D. J. McQueen, 1992. Biomanipulation: Hit or myth? Limnol. Oceanogr. 37: 192–207.Google Scholar
  17. Diehl, S., 1988. Foraging efficiency of three freshwater fishes: Effects of structural complexity and light. Oikos 53: 207–214.Google Scholar
  18. Dodson, S., 1988. The ecological role of chemical stimuli for the zooplankton: the predator-avoidance behaviour in Daphnia. Limnol. Oceanogr. 33: 1431–1439.Google Scholar
  19. Downing, J. A., C. Plante & S. Lalonde, 1990. Fish production correlated with primary productivity and the morphoedaphic index. Can. J. Fish. aquat. Sci. 47: 1929–1936.Google Scholar
  20. Engel, S., 1988. The role and interactions of submersed macrophytes in a shallow Wisconsin lake. J. Freshwat. Ecol. 4: 329–340.Google Scholar
  21. Fott., J., L. Pechar & M. Prazakowa, 1980. Fish as a factor controlling water quality in ponds. In Barica, J. & L. R. Mur (eds), Hypertrophic Ecosystems, Developments in Hydrobiology 2. Dr W. Junk Publishers, The Hague: 255–261.Google Scholar
  22. Fyns Amtskommune, 1995. Vandmiljøovervågning-Arreskov Sø 1994 [Environmental Survey-Lake Arreskov Sø 1994]. Fyns Amt, 123 pp.Google Scholar
  23. Gliwicz, Z. M. & J. Pijanowska, 1989. The role of predation in zooplankton succession. In Sommer, U. (ed.), Plankton Ecology. Springer Verlag, London: 253–296.Google Scholar
  24. Grimm, M. P. & J. J. G. M. Backx, 1990. The restoration of shallow eutrophic lakes and the role of northern pike, aquatic vegetation and nutrient concentration. Hydrobiologia 200/201: 557–566.Google Scholar
  25. Gulati, R. D., E. H. R. R. Lammens, M.-L. Meijer & E. van Donk, 1990. Biomanipulation, tool for water management. Hydrobiologia, 200/201: 1–628.Google Scholar
  26. Hanson, J. M. & M.G. Butler, 1994. Responses of plankton, turbidity and macrophytes to biomanipulation in a shallow prairie lakes. Can. J. Fish. aquat. Sci. 51: 1180–1188.Google Scholar
  27. Hanson, J. M. & W. C. Leggett, 1982. Empirical prediction of fish biomass and weight. Can. J. Fish. aquat. Sci. 39: 257–263.Google Scholar
  28. Hanson, J. M. & R. H. Peters, 1984. Empirical prediction of crustacean zooplankton biomass and profundal macrobenthos biomass in lakes. Can. J. Fish. aquat. Sci. 41: 439–445.Google Scholar
  29. Hansson, L. A., 1989. The influence of a periphytic biolayer on phosphorus exchange between substrate and water. Arch. Hydrobiol. 115: 21–26.Google Scholar
  30. Hart, P. C., 1988. Zooplankton feeding rates in relation to suspended sediment content: Potential influences on community structure in a turbid reservoir. Freshwat. Biol. 19: 123–139.Google Scholar
  31. Hasler, A. & F. Jones, 1949. Demonstration of the antagonistic action of large aquatic plants on algae and rotifers. Ecology30: 359–364.Google Scholar
  32. Havens, K. E., 1991. Fish-induced sediment resuspension: Effects on phytoplankton biomass and community structure in a shallow hypereutrophic lake. J. Plankton. Res. 13: 1163–1176.Google Scholar
  33. Hewett, S. W. & D. J. Stewart, 1989. Zooplanktivory by alewives in Lake Michigan: Ontogenetic, seasonal and historical patterns. Trans. am. Fish. Soc. 118: 581–596.Google Scholar
  34. Hoyer, M. V. & J. R. Jones, 1983. Factors affecting the relation between phosphorus and chlorophyll ain Midwestern reservoirs. Can. J. Fish. Aquat. Sci. 40: 192–199.Google Scholar
  35. Hunding, C., (ed.) 1977. Danish Limnolgy. Reviews and Perspectives. Folia limnol. scand. 17, 136 pp.Google Scholar
  36. Irvine, K., B. Moss & J. Stansfield, 1990. The potential of artificial refugia for maintaining a community of large-bodied cladocera against fish predation in a shallow eutrophic lake. Hydrobiologia 200/201: 379–389.Google Scholar
  37. Jansson, M., 1989. Role of benthic algae in transport of nitrogen from sediment to lake water in a shallow clearwater lake. Arch. Hydrobiol. 89: 101–109.Google Scholar
  38. Jensen, J. P., E. Jeppesen, K. Olrik & P. Kristensen, 1994. Impact of nutrients and physical factors on the shift from cyanobacterial to chlorococcal green algal dominance in shallow Danish lakes Can. J. Fish. aquat. Sci. 51: 1692–1699.Google Scholar
  39. Jeppesen, E., J. P. Jensen, P. Kristensen, M. Søndergaard, E. Mortensen, O. Sortkjaer & K. Olrik, 1990b. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 2: Threshold levels, long-term stability and conclusions. Hydrobiologia 200/201: 219–227.Google Scholar
  40. Jeppesen, E., P. Kristensen, J. P. Jensen, M. Søndergaard, E. Mortensen & T. Lauridsen, 1991. Recovery resilience following a reduction in external phosphorus loading of shallow, eutrophic Danish lakes: Duration, regulating factors and methods for overcoming resilience. Mem Ist. ital. Idrobiol. 48: 127–148.Google Scholar
  41. Jeppesen, E. M. Søndergaard, E. Kanstrup, B. Petersen, R. B. Henriksen, M. Hammershøj, E. Mortensen, J.P. Jensen & A. Have, 1994. Does the impact of nutrients on the biological structure and function of brackish and freshwater lakes differ? Hydrobiologia 275/276 (Dev. Hydrobiol. 94): 15–30.Google Scholar
  42. Jeppesen, E., M. Søndergaard, B. Kronvang, J. P. Jensen, L. M. Svendsen & T. Lauridsen. Lake and catchment management in Denmark, 1997. In Harper, D., B. Brierley, A. Ferguson, G. Phillips & J. Madgwick (eds), The ecological basis for lake and reservoir management. J. Wiley & Sons.Google Scholar
  43. Jeppesen, E., M. Søndergaard, E. Mortensen, P. Kristensen, B. Riemann, H. J. Jensen, J. P. Müller, O. Sortkjaer, J. P. Jensen, K. Christoffersen, S. Bosselmann & E. Dall, 1990a. Fish manipulation as a lake restoration tool in shallow, eutrophic temperate lakes 1: Cross-analysis of three Danish case-studies. Hydrobiologia 200/201: 205–218.Google Scholar
  44. Kirk, K. L., 1991. Inorganic particles alter competition in grazing plankton: the role of selective feeding. Ecology 72: 915–923.Google Scholar
  45. Kirk, K. L. & J. J. Gilbert, 1990. Suspended clay and the population dynamics of planktonic rotifers and cladocerans. Ecology 71: 1741–1755.Google Scholar
  46. Kristensen, P., J. P. Jensen & E. Jeppesen, 1991. Simple empirical lake models. Nitrogen and phosphorus in fresh and marine waters. NPo forskning fra Miljøstyrelsen. C-abstracts. Danish Environmental Protection Agency, Copenhagen, 125–145.Google Scholar
  47. Lammens, E. H. R. R., D. Gulati, M-L. Meijer & E. van Donk, 1990. The first biomanipulation conference: A synthesis. Hydrobiologia 200/201: 619–627.Google Scholar
  48. Lampert, W., 1993. Ultimate causes of diel vertical migration of zooplankton: New evidence for the predator-avoidance hypothesis. Arch. Hydrobiol. Beih. Ergebn. Limnol. 39: 79–88.Google Scholar
  49. Lauridsen, T., E. Jeppesen & M. Søndergaard, 1994. Colonization and succession of submerged macrophytes in shallow Lake Væng during the first five years following fish-manipulation. Hydrobiologia 275-276: 233–242.Google Scholar
  50. Lauridsen T. & D. Lodge, 1996. Avoidance by Daphnia magna Straus of fish and macrophytes: Chemical cues and predator-mediated use of macrophyte habitat. Limnol. & Oceanogr. 41: 794–798.Google Scholar
  51. Lauridsen, T. & I. Buenk, 1996. Diel changes in the horizontal distribution of zooplankton in the littoral zone of two eutrophic shallow lakes. Arch. Hydrobiol. 137: 161–176.Google Scholar
  52. Lauridsen, T., L. Junge Pedersen, E. Jeppesen & M. Søndergaard, 1996. The importance of macrophyte bed size for composition and horizontal migration of cladocerans in a shallow lake. J. Plankton Res. 18: 2283–2294.Google Scholar
  53. Lauridsen. T. L., E. Jeppesen & F. Ø. Andersen, 1993. Colonization of submerged macrophytes in shallow fish manipulated Lake Væng: Impact of sediment composition and water fowl grazing. Aquat. Bot. 46: 1–15.Google Scholar
  54. Leah, R. T., B. Moss & D. E. Forrest, 1980. The role of predation in causing major changes in the limnology of a hyper-eutrophic lake. Int. Rev. ges. Hydrobiol. 65: 223–247.Google Scholar
  55. Lindegaard, C., 1994. The role of zoobenthos in energy flow in two shallow lakes. Hydrobiologia 275/276: 313–322.Google Scholar
  56. Loose, C. J. E., von Elert & P. Dawidowicz, 1993. Chemically induced diel vertical migration in Daphnia: A new bioassay for kairomones exuded by fish. Arch. Hydrobiol. 126: 329–337.Google Scholar
  57. Luecke, C., M. J. Vanni, J. J. Magnuson, J. F. Kitchell & P. J. Jacobson, 1990. Seasonal regulation of Daphniapopulations by planktivorous fish: Implications for the clearwater phase. Limnol. Oceanogr. 35: 1718–1733.Google Scholar
  58. McQueen, D. J., 1990. Manipulating lake community structure: Where do we go from here? Freshwat. Biol. 23: 613–620.Google Scholar
  59. Meijer, M. L, W. de Haan, A. W. Breukelaar & H. Buiteveld, 1990. Is reduction of the benthivorous fish an important cause of high transparency following biomanipulation in shallow lakes? Hydrobiologia 200/201: 303–316.Google Scholar
  60. Meijer, M. L., E. Jeppesen, E. van Donk., B. Moss, M. Scheffer, E. H. R. R. Lammens, E. Van Nes, J. A. Berkum, G. J. de Jong, B. A. Faafeng & J. P. Jensen, 1994. Long-term responses to fish-stock reduction in small shallow lakes: interpretation of five year results of four biomanipulation cases in the Netherlands and Denmark. Hydrobiologia 275/276: 457–466.Google Scholar
  61. Mills, E. L. & J. L. Forney, 1983. Impact on Daphnia pulexof predation by yellow perch in Oneida Lake, New York. Trans. am. Fish. Soc. 112: 154–161.Google Scholar
  62. Mills, E. L., J. L. Forney & K. J. Wagner, 1987. Fish predation and its cascading effect on the Oneida Lake food chain. In Kerfoot, W. C. & A. Sih (eds), Predation: Direct and indirect effects on aquatic communities. University Press of New England, Hanover, New Hampshire: 118–131.Google Scholar
  63. Mortensen, E., E. Jeppesen, M. Søndergaard & L. Kamp Nielsen (eds), 1994. Nutrient Dynamics and Biological Structure in Shallow Freshwater and Brackish Lakes. Developments in Hydrobiology 94. Kluwer Academic Publishers, Dordrecht, 507 pp. Reprinted from Hydrobiologia 275/276.Google Scholar
  64. Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200/201: 367–378.Google Scholar
  65. Moss, B., S. McGowan & L. Carvalho, 1994. Determination of phytoplankton crops by top-down and bottom-up mechanisms in a group of English lakes, the West Midland Meres. Limnol. Oceanogr. 39: 1020–1029.Google Scholar
  66. Nygaard, G., 1949. Hydrobiological studies on some Danish ponds and lakes. Biol. Skr. K. Dan. Vidensk. Selsk. 7: 1–239.Google Scholar
  67. Pavoni, M., 1963. The importance of nanoplankton compared to netplankton. Schweiz. Z. Hydrol. 25: 219–341.Google Scholar
  68. Pennak, R. W., 1966. Structure of zooplankton populations in the littoral macrophyte zone of some Colorado lakes. Trans. am. microsc. Soc. 85: 329–349.Google Scholar
  69. Pennak, R. W., 1973. Some evidence for aquatic macrophytes as repellents for a limnetic species of Daphnia. Int. Revue. ges. Hydrobiol. 58: 569–576.Google Scholar
  70. Perrow, M. R., J. Schutten, J. R. Howes, T. Holzer, F. J. Madgwick & A. J. D. Jowitt, 1997. Interactions between coot (Fulica atra) and submerged macrophytes: the role of birds in the restoration process. Hydrobiologia 342/343: 241–255.Google Scholar
  71. Persson, L., 1991. Behavioural response to predators reverses the outcome of competition between prey species. Behav. Ecol. Sociobiol. 28: 101–105.Google Scholar
  72. Persson, L., G. Anderson, S. F. Hamrin & L. Johansson, 1988. Predation regulation and primary production along the productivity gradient of temperate lake ecosystems. In S. R. Carpenter (ed.), Complex interactions in lake communities. Springer Verlag, New York: 45–65.Google Scholar
  73. Phillips, G. L., M. Perrow & J. Stansfield, 1996. Manipulating the fish-zooplankton interaction in shallow lakes: a tool for restoration. In S. P. R. Greenstreet & M. L. Tasker (eds), Aquatic predators and their prey. Blackwell Scientific Publications, Oxford: 174–183.Google Scholar
  74. Prejs, A., A. Martyniak, S. Boron, P. Hliwa & P. Koperski, 1994. Food web manipulation in a small eutrophic Lake Wirbel, Poland: Effect of stocking with juvenile pike on planktivorous fish. Hydrobiologia 275/276: 65–70.Google Scholar
  75. Pridmore, R. D., W. N. Vant & J. C. Rutherford, 1985. Chlorophyll-nutrient relationships in North Island lakes (New Zealand). Hydrobiologia 121: 181–189.Google Scholar
  76. Quade, H. W., 1969. Cladoceran faunas associated with aquatic macrophytes in some lakes in northwestern Minnesota. Ecology 50: 170–179.Google Scholar
  77. Quiros, R., 1990. Predictors of relative fish biomass in lakes and reservoirs of Argentina. Can. J. Fish. aquat. Sci. 47: 928–939.Google Scholar
  78. Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge, 384 pp.Google Scholar
  79. Reynolds, C. S., 1994. The ecological basis for the successful biomanipulation of aquatic communities. Arch. Hydrobiol. 130: 1–33.Google Scholar
  80. Riemann, B., K. Christoffersen, H. J. Jensen, J. P. Müller, C. L. Lindegaard & S. Bosselmann, 1990. Ecological consequences of a manual reduction of roach and bream in a eutrophic, temperate lake. Hydrobiologia 200/201: 241–250.Google Scholar
  81. Ringelberg, J., 1991. Enhancement of the phototactic reaction in Daphnia hyalinaby a chemical mediated by juvenile perch (Perca fluviatilis). J. Plankton Res. 13: 17–25.Google Scholar
  82. Sas, H. (Ed.), 1989. Lake restoration by reduction of nutrient loading. Expectation, experiences, extrapolation. Acad. Ver. Richardz Gmbh. 497 pp.Google Scholar
  83. Scheffer, M., 1990. Multiplicity of stable states in freshwater systems. Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 475–486.Google Scholar
  84. Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in ecology and evolution (TREE) 8: 275–279.Google Scholar
  85. Schriver, P., J. Bøgestrand, E. Jeppesen & M. Søndergaard, 1995. Impact of submerged macrophytes on the interactions between fish, zooplankton and phytoplankton: Large-scale enclosure experiments in a shallow lake. Freshwat. Biol. 33: 255–270.Google Scholar
  86. Shapiro, J. & D. I. Wright, 1984. Lake restoration by biomanipulation. Round Lake, Minnesota–the first two years. Freshwat. Biol. 14: 371–383.Google Scholar
  87. Sommer, U., 1985. Comparison between steady state and non-steady state competition: Experiments with natural phytoplankton. Limnol. Oceanogr. 30: 335–346.Google Scholar
  88. Søndergaard, M., E. Jeppesen & S. Berg, 1997. Pike (Esox lucius) stocking as a biomanipulation tool, 2. Effects on lower trophic levels in Lake Lyng, Denmark. Hydrobiologia 342/343: 319–325.Google Scholar
  89. Søndergaard, M., E. Jeppesen, P. Kristensen & O. Sortkjær, 1990a. Interactions between sediment and water in a shallow hypertrophic lake: A study on phytoplankton collapses in Lake Søbygard, Denmark. Hydrobiologia 191: 149–164.Google Scholar
  90. Søndergaard, M., E. Jeppesen, E. Mortensen, E. Dall, P. Kristensen & O. Sortkjær, 1990b. Phytoplankton biomass reduction after planktivorous fish reduction in a shallow, eutrophic lake: A combined effect of reduced internal P-loading and increased zooplankton grazing. Hydrobiologia 200/201: 229–240.Google Scholar
  91. Søndergaard, M., P. Kristensen & E. Jeppesen, 1992. Phosphorus release from resuspended sediment in the shallow and wind exposed Lake Arresø, Denmark. Hydrobiologia 228: 91–99.Google Scholar
  92. Søndergaard, M., L. Olufsen, T. Laundsen, E. Jeppesen & T. Vindbæk Madsen, 1996. The impact of grazing waterfowl on submerged macrophytes: In situ experiments in a shallow eutrophic lake. Aquat. Bot. 53: 73–84.Google Scholar
  93. Stansfield, J. H., M. R. Perrow, L. D. Tench, A. J. D. Jowitt & A. A. L. Taylor, 1997. Submerged macrophytes as refuges for grazing Cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation pressure. Hydrobiologia 342/343: 229–240.Google Scholar
  94. Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnol. Oceanogr. 29: 472–486.Google Scholar
  95. Van Donk, E., E. De Deckere, J. G. P. Klein Breteler & J. Meulemans, 1994. Herbivory by waterfowl and fish on macrophytes in a biomanipulated lake: Effects on long-term recovery. Verh. int. Ver. Limnol. 25: 2139–2143.Google Scholar
  96. Whiteside, M. C., 1988. 0+ fish as major factors affecting abundance patterns of littoral zooplankton. Verh. int. Ver. Limnol. 23: 1710–1714.Google Scholar
  97. Windolf, J., E. Jeppesen, M. Søndergaard, J. P. Jensen & L. Sortkjær, 1993. Vandmiljøplanens Overvågningsprogram 1992. Ferske vandornråder–Søer. [The Action Plan on the Aquatic Environment 1992. Freshwater area-Lakes]. National envir. Res. Inst., 129 pp.Google Scholar
  98. Winfield, L. J., 1986. The influence of simulated aquatic macrophytes on the zooplankton consumption rate of juvenile roach, Rutilus rutilus, rudd, Scardinius erythrophthalmus, and perch, Perca fluviatilis. J. Fish. Biol. 29: 37–48.Google Scholar
  99. Zdanowski B., 1982. Variability of nitrogen and phosphorus contents and lake eutrophication. Pol. Arch. Hydrobiol. 29: 3–4.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Erik Jeppesen
    • 1
  • Jens Peder Jensen
    • 1
  • Martin Søndergaard
    • 1
  • Torben Lauridsen
    • 1
  • Leif Junge Pedersen
    • 1
  • Lars Jensen
    • 1
  1. 1.Dept. of Lake and Estuarine EcologyNational Environmental Research InstituteSilkeborgDenmark

Personalised recommendations