Hydrobiologia

, Volume 408, Issue 0, pp 13–30 | Cite as

Biomanipulation in shallow lakes in The Netherlands: an evaluation of 18 case studies

  • Marie-Louise Meijer
  • Ingeborg de Boois
  • Marten Scheffer
  • Rob Portielje
  • Harry Hosper
Article

Abstract

Eighteen shallow lakes in The Netherlands were subjected to biomanipulation, i.e. drastic reduction of the fish stock, for the purpose of lake restoration. The morphology and the nutrient level of the lakes differed, as did the measures applied. In some lakes biomanipulation was accompanied by reduction of the phosphorus loading. In all but two lakes, the Secchi disk transparency increased after the fish removal. Eight lakes (no phosphorus loading reduction, except for one lake) showed a strong and quick response to the measures: the bottom of the lake became visible (`lake bottom view') and there was a massive development of submerged macrophytes. In eight other lakes the water transparency increased, but lake bottom view was not obtained. In the biomanipulated lakes the decrease in total phosphorus and chlorophyll aand the increase in Secchi disk transparency were significantly stronger than the general trend occurring in Dutch lakes where no measures had been taken. The improvement in the Secchi depth and chlorophyll awas also stronger than in lakes where only the phosphorus load was reduced. The critical factor for obtaining clear water was the extent of the fish reduction in winter. Significant effects were observed only after >75% fish reduction. Success seems to require substantial fish manipulation. In such strongly biomanipulated lakes, wind resuspension of the sediment never prevented the water from becoming clear. No conclusion can be drawn with respect to the possible negative impact of cyanobacteria or Neomysison grazing by Daphniaand consequently on water clarity. In all lakes where there had been a high density of cyanobacteria or years with a high density of Neomysisother factors such as insufficient fishery may explain why lake bottom view was not obtained. In all lakes with additional phosphorus loading reduction the fish stock has been reduced less drastically (15–60%). In these lakes the effects on transparency were less pronounced than in the lakes with > 75% fish removal. Daphniagrazing seems responsible for spring clearing in all clear lakes but one. In three lakes the reduction of benthivorous fish also increased the transparency. The factors that determine water clarity in summer are less obvious. In most clear lakes a low algal biomass coincided with a macrophyte coverage of more than 25% of the lake surface area. However, it was not clear what mechanism caused the low algal biomass in summer, although inorganic nitrogen concentrations were regularly found to be very low. Daphniagrazing in open water seemed to be of little importance for suppressing the algal biomass in summer. Although in most lakes the total phosphorus concentration decreased after the biomanipulation, the dissolved phosphorus concentration remained too high to cause phosphorus limitation of the algal growth. In four out of six clear lakes for which there are long-term data the transparency decreased again after 4 years. In one lake with lower nutrient levels the Secchi disk transparency increased over the years. However, the number of lakes with low nutrient levels is too small for conclusions to be drawn regarding the impact of nutrient levels on the stability of the clear water state.

biomanipulation shallow lakes fish stock reduction macrophytes Daphniagrazing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barten, I., 1997. De Waay. In I. de Boois, T. Slingerland & M-L. Meijer (eds), Actief Biologisch Beheer in Nederland, Projecten 1987–1996, Institute for Inland Water Management and Waste Water Treatment, Lelystad, report 97.084: 145–152.Google Scholar
  2. Benndorf, J., 1995. Possibilities and limits for controlling eutrophication by biomanipulation. Int. rev. ges. Hydrobiol. 80: 519–534.Google Scholar
  3. Benndorf, J., H. Kneschke, K. Kossatz & E. Penz, 1984. Manipulation of the pelagic food web by stocking with predacious fishes. Int. Rev. ges. Hydrobiol. 69: 407–428.Google Scholar
  4. Benndorf, J., H. Schultz, A. Benndorf, R. Unger, E. Penz, H. Kneschke, K. Kossatz, R. Dumke, U. Hornig, R. Kruspe & S. Reichnel, 1988. Food-web manipulation by enhancement of piscivorous fish stocks: long-term effects in the hypertrophic Bautzen reservoir. Limnologica 19: 97–110.Google Scholar
  5. Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygiered, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norw. J. Zool. 24: 419–456.Google Scholar
  6. Breukelaar, A. W., E. H. R. R. Lammens & J. G. P. Klein Breteler, 1994. Effects of benthivorous bream (Abramis brama) and car (Cyprinus carpio) on sediment resuspension and concentrations of nutrients and chlorophyll a. Freshwat. Biol. 32: 113–121.Google Scholar
  7. Carpenter, S. R. & J. F. Kitchell, 1992. Trophic cascade and biomanipulation: interface of research and management: a reply to the comment by De Melo et al. Limnol. Oceanogr. 37: 208–213.Google Scholar
  8. Carpenter, S. R. & J. F. Kitchell, 1993. The Trophic Cascade in Lakes. Cambridge University Press: 386. pp.Google Scholar
  9. Carpenter, S. R., K. L. Cottingham & D. E. Schindler, 1992. Biotic feedbacks in lake phosphorus cycles. TREE 7: 332–336.Google Scholar
  10. Claassen, T. H. L., 1994. Eutrophication and restoration of a peat ponds area, De Deelen, in the northern Netherlands. Verh. int. Ver. Limnol. 25: 1329–1334.Google Scholar
  11. Claassen, T. H. L., 1997. Ecological water quality objetives in The Netherlands especially in the province of Friesland. Eur. Wat. Poll. Control 7: 36–45.Google Scholar
  12. Claassen, T. H. L. & M. Clewits, 1995. Actief Biologisch Beheer in de Sondelerleien: een meer met een korte verblijftijd. H2O 28: 805–808.Google Scholar
  13. Claassen, T. H. L. & R. Maasdam, 1995. Restoration of the broadsarea Alde Feanen, The Netherlands: measures and results. Wat. Sci. Tech. 31: 229-233.Google Scholar
  14. De Melo, R., R. France & D. J. McQueen, 1992. Biomanipulation: hit or myth? Limnol. Oceanogr. 37: 192–207.Google Scholar
  15. Driessen, O., P. Pex & H. H. Tolkamp, 1993. Restoration of a lake: First results and problems. Verh. int. Ver. Limnol. 25: 617–620.Google Scholar
  16. Grimm, M. P. & J. J. G. M. Backx, 1990. The restoration of shallow eutrophic lakes and the role of northern pike, aquatic vegetation and nutrient concentration. Hydrobiologia 200/201: 557–566.Google Scholar
  17. Grimm, M.P. & J. J. G. M. Backx, 1994. Mass-removal of fish from lake Wolderwijd (2700 ha), The Netherlands. Part I: Planning and strategy of a large scale biomanipulation project. In Cowx, I.G. (ed.), Rehabilitation of Freshwater Fisheries, Fishing News Books, Hull, UK: 390–400.Google Scholar
  18. Gliwicz, Z. M., 1990. Why do cladocerans fail to control algal blooms? Hydrobiologia 200/201: 557–566.Google Scholar
  19. Henrikson, L., H. G. Nyman, H. G. Oscarson & J. A. Stenson, 1980. Trophic changes without changes in the external nutrient loading. Hydrobiologia 68: 257–263.Google Scholar
  20. Hansson, L.-A., H. Annadotter, E. Bergman, S. F. Hamrin, E. Jeppesen, T. Kairesalo, E. Luokkanen, P.Å. Nilson, M. Søndergaard, 1999. Biomanipulation as an application of food chain theory: constraints, synthesis and recommendations for temperate lakes. Ecosystems 1: 13–23.Google Scholar
  21. Havens, K. E., 1993. Responses to experimental fish manipulations in a shallow, hypertrophic lake: The relative importance of benthic nutrient cycling and trophic cascade. Hydrobiologia 254: 73–80.Google Scholar
  22. Hosper, Harry, 1997. Clearing Lakes. An ecosystem approach to the restoration andmanagement of shallow lakes in The Netherlands. Thesis, Agricultural University, Wageningen: 168 pp.Google Scholar
  23. Hosper, S. H. & M.-L. Meijer, 1993. Biomanipulation, will it work for your lake. A simple test for the assessment of chances for clear water, following drastic fish-stock reduction in shallow eutrophic lakes. Ecol. Eng. 2: 63–72.Google Scholar
  24. Jeppesen, E., 1998. The ecology of shallow lakes, trophic interactions in the pelagial. D.Sc. Thesis, NERI Tech. Report no. 247, Silkeborg, Denmark, 420 pp.Google Scholar
  25. Jeppesen, E., J. P. Jensen, P. Kristensen, M. Søndergaard, E. Mortensen, O. Sortkjær & K. Olrik, 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 2: threshold levels, long-term stability and conclusions. Hydrobiologia 200/201: 219–227.Google Scholar
  26. Jeppesen, E., T. Lauridsen, T. Kairesalo & M. R. Perrow, 1997. Impact of submerged macrophytes on fish-zooplankton interactions in lakes. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The structuring role of submerged macrophytes in lakes. Ecological Studies. Springer Verlag, New York: 91–115.Google Scholar
  27. KIWA, 1994. A protocol for trend analysis of the input of pollutants to the North Sea. SWO 93.337, 46 pp.Google Scholar
  28. Lauridsen, T. L. & I. Buenk, 1996. Diel changes in the horizontal distribution of zooplankton in the littoral zone of two shallow eutrophic lakes. Arch. Hydrobiol. 137: 161–176.Google Scholar
  29. Meijer, M.-L. & S. H. Hosper, 1997. Effects of biomanipulation in the large and shallow Lake Wolderwijd, The Netherlands. Hydrobiologia 342/343: 355–349.Google Scholar
  30. Meijer, M.-L. & I. de Boois, 1998. Actief Biologisch Beheer in Nederland. Evaluatie Projecten 1987–1996. Institute for Inland Water Management andWasteWater Treatment, Lelystad, report 98.023: 140 pp.Google Scholar
  31. Meijer, M.-L., E. H. R. R. Lammens, A. J. P. Raat, M. P. Grimm & S. H. Hosper, 1990a. Impact of cyprinids on zooplankton and algae in ten drainable ponds. Hydrobiologia 191: 275–284.Google Scholar
  32. Meijer, M.-L., M. W. de Haan, A. W. Breukelaar & H. Buitenveld, 1990b. Is reduction of the benthivorous fish an important cause of high transparency following biomanipulation in shallow lakes? Hydrobiologia 200/201: 303–315.Google Scholar
  33. Meijer, M.-L., E. H. R. R Lammens, A. J. P. Raat, J. G. P. Klein Breteler & M. P. Grimm, 1995. Development of fish communities in lakes after biomanipulation. Neth. J. aquat. Ecol. 29: 91–101.Google Scholar
  34. Meijer, M.-L., E. Jeppesen, E. van Donk, B. Moss, M. Scheffer, E. Lammens, E. van Nes, J. A. van Berkum, G. L. de Jong, B. A. Faafeng & J. P. Jensen, 1994a. Long-term responses to fish stock reduction in small shallow lakes: interpretation of fiveyear results of four biomanipulation cases in The Netherlands and Denmark. Hydrobiologia 275/276: 457–466.Google Scholar
  35. Meijer, M.-L., E. H. R. R Lammens, R. D. Gulati, M. P. Grimm, J. J. G. M. Backx, P. Hollebeek, E. M. Blaauw & A. W. Breukelaar, 1994b. The consequences of a drastic fish reduction in the large and shallow lake Wolderwijd, The Netherlands. Can we understand what happened? Hydrobiologia 275/276: 31–42.Google Scholar
  36. Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200/201: 367–377.Google Scholar
  37. Ozimek, T., R. D. Gulati & E. van Donk, 1990. Can macrophytes be useful in biomanipulation of lakes? The Lake Zwemlust example. Hydrobiologia 200/201: 399–407.Google Scholar
  38. Perrow, M. R., M.-L. Meijer, P. Dawidowicz & H. Coops, 1997. Biomanipulation in shallow lakes: state of the art. Hydrobiologia 342/343: 355–365.Google Scholar
  39. Persson, L. & L. B. Crowder, 1997. Fish–habitat interactions mediated via ontogenetic shifts. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The structuring role of submerged macrophytes in lakes, Ecological Studies. Springer Verlag, New York: 3–24.Google Scholar
  40. Platform Ecologisch Herstel Meren, 1997. Actief Biologisch Beheer in Nederland. In de Boois, I., T. Slingerland & M.-L. Meijer (eds), Projecten 1987–1996. Institute for Inland Water Management and Waste Water Treatment, Lelystad, report 97.084: 184 pp.Google Scholar
  41. Philips, G. & B. Moss, 1994. Is biomanipulation a usefull technisque in lake management? National Rivers Authority, UK, R&D note 276: 48 pp.Google Scholar
  42. Portielje, R. & D. van der Molen, 1999. Relationships between eutrophication variables: from nutrient loading to transparency. Hydrobiologia, 408/409: 375–387Google Scholar
  43. Reynolds, C. S., 1994. The ecological basis for successful biomanipulation of aquatic communities. Arch. Hydrobiol. 130: 1–33.Google Scholar
  44. Scheffer, M., 1998. Ecology of shallow lakes. In Population and Community Biology Series 22. Chapman & Hall, London: 357 pp.Google Scholar
  45. Scheffer-Ligtermoet, Y., 1997. Holland Ankeveense Plas. In de Boois, I., T. Slingerland & M.-L. Meijer (eds), Actief Biologisch Beheer in Nederland, Projecten 1987–1996. Institute of Inland Water Management and Waste Water Treatment, Lelystad, report 97.084: 73–81.Google Scholar
  46. Schriver, P., J. Bogestrand, E. Jeppesen & M. Søndergaard, 1995. Impact of submerged macrophytes on fish–zooplankton interactions: large-scale enclosure experiments in a shallow lake. Freshwat. Biol. 33: 255–270.Google Scholar
  47. Shapiro, J. & Wright, D. I., 1984. Lake restoration by biomanipulation: Round Lake Minnesota, the first two years. Freshwat. Biol. 14: 371–383.Google Scholar
  48. Shapiro, J., V. Lamarra & M. Lynch, 1975. Biomanipulation: an ecosystem approach to lake restoration. In Brezonik, P. L. & J. L. Fox (eds), Proceedings of a symposium on water quality management through biological control. Univ. of Florida, Gainesville: 85–96.Google Scholar
  49. Søndergaard, M. & B. Moss, 1997. Impact of submerged macrophytes on phytoplankton in shallow freshwater lakes. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The structuring role of submerged macrophytes in lakes. Ecological Studies, Springer Verlag, New York: 115–133.Google Scholar
  50. Theil, H., 1950. A rank-invariant method of linear and polynomial regression analysis, 1, 2 and 3. Ned. Akad. Wetensch. Proc. 53: 386–392, 521–525, 1397–1412.Google Scholar
  51. Torenbeek, R. & D. de Vries, 1997. Zuidlaardermeer. In de Boois, I., T. Slingerland & M.-L. Meijer (eds), Actief Biologisch Beheer in Nederland, Projecten 1987-1996. Institute for Inland Water Management and Waste Water Treatment, Lelystad, report 97.084: 169–176.Google Scholar
  52. Van Berkum, J. A., M. Klinge & M. P. Grimm, 1995. Biomanipulation in the Duinigermeer, first results. Neth. J. aquat. Ecol. 29: 81–90.Google Scholar
  53. Van Berkum, J. A., M.-L. Meijer & J. H. Kemper, 1996. Actief Biologisch Beheer in het Noorddiep. H2O 29: 308–313.Google Scholar
  54. Van den Berg, M. S., H. Coops, M-L. Meijer, M. Scheffer & J. Simons, 1998. Clear water associated with a dense Charavegetation in the shallow and turbid lake Veluwemeer, The Netherlands. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The structuring role of submerged macrophytes in lakes. Ecological Studies, Springer Verlag, New York: 339–352.Google Scholar
  55. Van der Molen, D. T. & R. Portielje, 1999. Multi-lake studies in The Netherlands: trends in eutrophication. Hydrobiologia, 408/409: 359–365.Google Scholar
  56. Van der Vlugt, J. C., P. A. Walker, J. van der Does & A. J. P. Raat, 1992. Fisheries management as an additional lake restoration measure: biomanipulation scaling up problems. Hydrobiologia 233: 213–224.Google Scholar
  57. Van Donk, E. & R. D. Gulati, 1995. Transition of a lake to turbid state six years after biomanipulation: mechanisms and pathways. Wat. Sci. Tech. 32: 197–206.Google Scholar
  58. Van Donk, E., M. P. Grimm, R. D. Gulati & J. P. G. Klein Breteler, 1990a. Whole-lake food-web manipulation as a means to study community interactions in a small ecosystem. Hydrobiologia 200/201: 275–289.Google Scholar
  59. Van Donk, E., M. P. Grimm, R. D. Gulati, P. G. M Heuts, W. A. de Kloet & E. van Liere, 1990b. First attempt to apply wholelake food-web manipulation on a large scale in The Netherlands. Hydrobiologia 200/201: 291–302.Google Scholar
  60. Van Donk, E., R. D. Gulati, A. Iedema & J. T. Meulemans, 1993. Macrophyte-related shifts in the nitrogen and phosphorus contents of the different trophic levels in a biomanipulated shallow lake. Hydrobiologia 251: 19–26.Google Scholar
  61. Van Scheppingen, Y., 1997. Boschkreek. In de Boois, I., T. Slingerland & M.-L. Meijer (eds), Actief Biologisch Beheer in Nederland, Projecten 1987–1996, Institute for Inland Water Management and Waste Water Treatment, Lelystad, report 97.084: 29–36.Google Scholar
  62. Veeningen, R., 1997. Restoration of the lake Nannewiid: first results. In Royackers, R., R. H. Aalderink & G. Blom (eds), Eutrophication Research, State-of-the-art, Proceedings of a symposium for Prof. Lyklema. University of Wageningen: 273–279.Google Scholar
  63. Walker, P. A., 1994. Development of pike and perch populations after biomanipulation of fish stocks. In Cowx, I. C. (ed.), Rehabilitation of freshwater fisheries. Fishing News Books, Blackwell Scientific Publications: 376–389.Google Scholar
  64. Wium-Andersen, S., U. Anthoni, C. Christophersen & G. Houen, 1982. Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes Charales. Oikos 39: 187–190.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Marie-Louise Meijer
    • 1
  • Ingeborg de Boois
    • 1
  • Marten Scheffer
    • 2
  • Rob Portielje
    • 1
  • Harry Hosper
    • 1
  1. 1.Institute of Inland Water Management and Waste Water TreatmentLelystadThe Netherlands
  2. 2.Agricultural University, Department of Aquatic Ecology and Water Quality ManagementWageningenThe Netherlands

Personalised recommendations