, 102:61 | Cite as

Deleterious mutations in animal mitochondrial DNA

  • Michael W. Nachman


A simple neutral model predicts that the ratio of non-synonymous to synonymous fixed differences between species will be the same as the ratio of non-synonymous to synonymous polymorphisms within species. This prediction is tested with existing mitochondrial datasets from 25 animal species. In slightly over half of the studies, the ratio of replacement to silent polymorphisms within species is significantly greater than the ratio of replacement to silent fixed differences between species. These observations are best explained by a substantial number of mildly deleterious amino acid mutations that contribute to heterozygosity but rarely become fixed.

neutral theory slightly deleterious evolution mutations mitochondrial DNA 


  1. Akashi, H., 1995. Inferring weak selection from patterns of polymorphism and divergence at ‘silent’ sites in Drosophila DNA. Genetics 139: 1067-1076.PubMedGoogle Scholar
  2. Ballard, J.W.O. & M. Kreitman, 1994. Unraveling selection in the mitochondrial genome of Drosophila. Genetics 138: 757-772.PubMedGoogle Scholar
  3. Baker, R.J., R.A. VanDenBussche, A.J. Wright, L.E. Wiggins, M.J. Hamilton, E.P. Reat, M.H. Smith, M.D. Lomakin & R.K. Chesser, 1996. High levels of genetic change on rodents of Chernobyl. Nature 380: 707-708.PubMedCrossRefGoogle Scholar
  4. Brookfield, J.F.Y. & P.M. Sharp, 1994. Neutralism and selection face up to DNA data. Trends Genet. 10: 109-111.PubMedCrossRefGoogle Scholar
  5. Brower, A.V.Z., 1994. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc. Nat. Acad. Sci. USA 91: 6491-6495.PubMedCrossRefGoogle Scholar
  6. Bruna, E.M., R.N. Fisher & T.J. Case, 1996. Morphological and genetic evolution appear decoupled in Pacific skinks (Squamata: Scincidae: Emoia). Proc. R. Soc. Lond. B 263: 681-688.Google Scholar
  7. Carr, S.M., A.J. Snellen, K.A. Howse & J.S. Wroblewski, 1995. Mitochondrial DNA sequence variation and genetic stock structure of Atlantic cod (Gadus morhua) from bay and offshore locations on the Newfoundland continental shelf. Mol. Ecology 4: 79-88.Google Scholar
  8. Charlesworth, B., 1994. The effect of background selection against deleterious mutations on weakly selected, linked variants. Genet. Res. Camb. 63: 213-227.Google Scholar
  9. Charlesworth, B., M.T. Morgan & D. Charlesworth, 1993. The effect of deleterious mutations on neutral molecular variation. Genetics 134: 1289-1303.PubMedGoogle Scholar
  10. Charlesworth, D., B. Charlesworth & M.T. Morgan, 1995. The pattern of neutralmolecular variation under the background selection model. Genetics 141: 1619-1632.PubMedGoogle Scholar
  11. Clark, A.J., 1984. Natural selection with nuclear and cytoplasmic transmission. I. A deterministic model. Genetics 107: 679-701.PubMedGoogle Scholar
  12. DaSilva, M.N.F. & J.L. Patton, 1993. Amazonian phylogeography: mtDNA sequence variation in arboreal echimyid rodents (Caviomorpha). Mol. Phylogenet. Evol. 2: 243-255.CrossRefGoogle Scholar
  13. Edwards, S.V. & A.C. Wilson, 1990. Phylogenetically informative length polymorphism and sequence variability in mitochondrial DNA of Australian songbirds (Pomatostomus). Genetics 126: 695-711.PubMedGoogle Scholar
  14. Fisher, R.A., 1958. The Genetical Theory of Natural Selection, 2nd ed. Dover Publications, Inc., New York.Google Scholar
  15. Fu, Y.X. & W.H. Li, 1993. Statistical tests of neutrality ofmutations. Genetics 133: 693-709.PubMedGoogle Scholar
  16. Gaut, B.S. & M.T. Clegg, 1993a. Nucleotide polymorphism in the Adh1 locus of pearl millet (Pennisetum glaucum)(Poaceae). Genetics 135: 1091-1097.PubMedGoogle Scholar
  17. Gaut, B.S. & M.T. Clegg, 1993b. Molecular evolution of the Adh1 locus in the genus Zea. Proc. Nat. Acad. Sci. 90: 5095-5099.PubMedCrossRefGoogle Scholar
  18. Gillespie, J.H., 1991. The Causes of Molecular Evolution. Oxford University Press, Oxford.Google Scholar
  19. Gillespie, J.H., 1994. Substitution processes in molecular evolution. III. Deleterious alleles. Genetics 138: 943-952.PubMedGoogle Scholar
  20. Gillespie, J.H., 1994. Alternatives to the neutral theory, pp. 1-17 in Nonneutral Evolution. Theories and Molecular Data, edited by B. Golding. Chapman and Hall, New York.Google Scholar
  21. Gillespie, J.H., 1995. On Ohta's hypothesis: most amino acid substitutions are deleterious. J. Mol. Evol. 40: 64-69.CrossRefGoogle Scholar
  22. Guttman, D.S. & D.E. Dykhuizen, 1994. Detecting selective sweeps in naturally occurring Escherichia coli. Genetics 138: 993-1003.PubMedGoogle Scholar
  23. Hammer, M., 1995. A recent common ancestry for human Y chromosomes. Nature 378: 376-378.PubMedCrossRefGoogle Scholar
  24. Hedges, S.B., J.P. Bogart & L.R. Maxson, 1992. Ancestry of unisexual salamanders. Nature 356: 708-710.PubMedCrossRefGoogle Scholar
  25. Hey, J., 1997. Mitochondrial and nuclear genes present conflicting portraits of human origins. Mol. Biol. Evol. 14: 166-172.PubMedGoogle Scholar
  26. Hudson, R.R., M. Kreitman & M. Aguade, 1987. A test of neutral molecular evolution based on nucleotide data. Genetics 116: 153- 159.PubMedGoogle Scholar
  27. Hutter, C.M. & D.M. Rand, 1995. Competition betweenmitochondrial haplotypes in distinct nuclear genetic environments: Drosophila pseudoobscura vs. D. persimilis. Genetics 140: 537-548.PubMedGoogle Scholar
  28. Jukes, T.H. & C.R. Cantor, 1969. Evolution of protein molecules, pp. 21-132 in Mammalian Protein Metabolism, edited by H.N. Munro, Academic Press, New York.Google Scholar
  29. Kaneko, M., Y. Satta, E. T. Matsura & S. Chigusa, 1993. Evolution of the mitochondrial ATPase 6 gene in Drosophila: unusually high level of polymorphism in D. melanogaster. Genet. Res. 61: 195-204.PubMedCrossRefGoogle Scholar
  30. Kelly, J.K., 1997. A test of neutrality based on interlocus associations. Genetics 146: 1197-1206.PubMedGoogle Scholar
  31. Kilpatrick, S.T. & D.M. Rand, 1995. Conditional hitchhiking of mitochondrial DNA: frequency shifts of Drosophila melanogaster mtDNA variants depend on nuclear genetic background. Genetics 141: 1113-1124.PubMedGoogle Scholar
  32. Kimura, M., 1968. Evolutionary rate at the molecular level. Nature 217: 624-626.PubMedCrossRefGoogle Scholar
  33. Kimura, M., 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.Google Scholar
  34. Kreitman, M. & H. Akashi, 1995. Molecular evidence for natural selection. Ann. Rev. Ecol. Syst. 26: 403-422.CrossRefGoogle Scholar
  35. Li, W. -H. & L. A. Sadler, 1991. Low nucleotide diversity in man. Genetics 129: 513-523.PubMedGoogle Scholar
  36. MacRae, A.F. & W.W. Anderson, 1988. Evidence for nonneutrality of mitochondrial DNA haplotypes in Drosophila pseudoobscura. Genetics 120: 485-494.PubMedGoogle Scholar
  37. McDonald, J.H., 1996. Detecting nonneutral heterogeneity across a region of DNA sequence in the ratio of polymorphism to divergence. Mol. Biol. Evol. 13: 253-260.PubMedGoogle Scholar
  38. McDonald, J. H. & M. Kreitman, 1991. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351: 652-654.PubMedCrossRefGoogle Scholar
  39. Moritz, C., C.J. Schneider & D.B. Wake, 1992. Evolutionary relationships within the Ensatina eschscholtzii complex confirm the ring species interpretation. Syst. Biol. 41: 273-291.CrossRefGoogle Scholar
  40. Nachman, M.W. & C.F. Aquadro, 1994. Polymorphism and divergence at the 5' flanking region of the sex determining locus, Sry, in mice. Mol. Biol. Evol. 11: 539-547.PubMedGoogle Scholar
  41. Nachman, M.W., S.N. Boyer & C.F. Aquadro, 1994. Nonneutral evolution at the mitochondrial NADH dehydrogenase subunit 3 gene in mice. Proc. Nat. Acad. Sci. USA 91: 6364-6368.PubMedCrossRefGoogle Scholar
  42. Nachman, M.W., W.M. Brown, M. Stoneking & C.F. Aquadro, 1996. Nonneutral mitochondrial DNA variation in humans and chimpanzees. Genetics 142: 953-963.PubMedGoogle Scholar
  43. Ohta, T., 1972. Population size and rate of evolution. J. Mol. Evol. 1: 305-314.CrossRefGoogle Scholar
  44. Ohta, T. & J.H. Gillespie, 1996. Development of neutral and nearly neutral theories. Theoret. Pop. Biol. 49: 128-142.CrossRefGoogle Scholar
  45. Ohta, T. & M. Kimura, 1971. On the constancy of the evolutionary rate of cistrons. J. Mol. Evol. 1: 18-25.CrossRefGoogle Scholar
  46. Rand, D.M. & L.M. Kann, 1996. Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes from Drosophila, mice, and humans. Mol. Biol. Evol. 13: 735-748.PubMedGoogle Scholar
  47. Rand, D.M. & L.M. Kann, 1998. Mutation and selection at silent and replacement sites in the evolution of animal mitochondrial DNA. Genetica 102/103: 393-407.PubMedCrossRefGoogle Scholar
  48. Rand, D.M., M. Dorfsman & L.M Kann, 1994. Neutral and nonneutral evolution of Drosophila mitochondrial DNA. Genetics 138: 741-756.PubMedGoogle Scholar
  49. Sawyer, S.A. & D.L. Hartl, 1992. Population genetics of polymorphism and divergence. Genetics 132: 1161-1176.PubMedGoogle Scholar
  50. Sawyer, S.A., D.E. Dykhuizen & D.L. Hartl, 1987. Confidence interval for the number of selectively neutral amino acid polymorphisms. Proc. Nat. Acad. Sci. USA 84: 6225-6228.PubMedCrossRefGoogle Scholar
  51. Sokal, R.R. & F.J. Rohlf, 1995. Biometry, 3rd edition. W.H. Freeman and Co., New York.Google Scholar
  52. Summers, K., E. Bermingham, L. Weigt, S. McCafferty & L. Dahlstrom, 1997. Phenotypic and genetic divergence in three species of dartpoison frogs with contrasting parental behavior. J. Hered. 88: 8-13.PubMedGoogle Scholar
  53. Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585-595.PubMedGoogle Scholar
  54. Takahata, N., 1993. Relaxed natural selection in human populations during the Pleistocene. Jpn. J. Genet. 68: 539-547.PubMedCrossRefGoogle Scholar
  55. Talbot, S.L. & G.F. Shields, 1996. Phylogeography of brown bears (Ursus arctos) of Alaska and paraphyly within the Ursidae. Mol. Phylogenet. Evol. 5: 477-494.PubMedCrossRefGoogle Scholar
  56. Templeton, A.R., 1996. Contingency tests of neutrality using intra/ interspecific gene trees: the rejection of neutrality for the evolution of the mitochondrial cytochrome oxidase II gene in the hominoid primates. Genetics 144: 1263-1270.PubMedGoogle Scholar
  57. Watterson, G.A., 1978. Thehomozygosity test of neutrality. Genetics 88, 405-417.PubMedGoogle Scholar
  58. Watterson, G.A., 1975. On the number of segregating sites in genetic models without recombination. Theoret. Pop. Biol. 7: 256-276.CrossRefGoogle Scholar
  59. Wood, T.C. & C. Krajewski, 1996. Mitochondrial DNA sequence variation among the subspecies of Sarus Crane (Grus antigone). Auk 113: 655-663.Google Scholar
  60. Zink, R.M. & R.C. Blackwell, 1996. Patterns of allozyme, mitochondrial DNA, and morphometric variation in four sparrow genera. Auk 113: 59-67.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Michael W. Nachman
    • 1
  1. 1.Department of Ecology and Evolutionary Biology, Biosciences West BuildingUniversity of ArizonaTucsonUSA (Phone

Personalised recommendations