Hyperfine Interactions

, Volume 120, Issue 1–8, pp 497–501 | Cite as

Cubic β-Fe2O3 as the product of the thermal decomposition of Fe2(SO4)3

  • Radek Zboril
  • Miroslav Mashlan
  • Dagmar Krausova
  • Petr Pikal


The thermal decomposition of Fe2(SO4)3 in air has been investigated using transmission Mössbauer spectroscopy, CEMS and X-ray powder diffraction. The hexagonal α-Fe2O3 and cubic β-Fe2O3 with spinel structure have been identified as products of the decomposition. The influence of the Fe2(SO4)3 particle size on the yield of β-Fe2O3 in the final product is pointed out and discussed. The size of particles and the calcination temperature are the most important kinetic factors determining the phase composition (β-Fe2O3/α-Fe2O3) of iron (III) oxide.


Thermal Decomposition Quadrupole Splitting CEMS Complete Decomposition Neel Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Ben-Dor, E. Fischbein, I. Felner and Z. Kalman, J. Electrochem. Soc. 124 (1977) 451.CrossRefGoogle Scholar
  2. [2]
    T. Muruyama and T. Kanagawa, J. Electrochem. Soc. 143 (1996) 1675.CrossRefGoogle Scholar
  3. [3]
    T. Gonzales-Carreno, M.P. Morales and C.J. Serna, J. Mater. Sci. Lett. 13 (1994) 381.CrossRefGoogle Scholar
  4. [4]
    Y. Ikeda, M. Takano and Y. Bando, Bull. Inst. Chem. Res. Kyoto Univ. 64 (1986) 249.Google Scholar
  5. [5]
    E.R. Bauminger, L. Ben-Dor, I. Felner, E. Fischbein, I. Nowik and S. Ofer, Physica B 86-88 (1977) 910.CrossRefGoogle Scholar
  6. [6]
    L. Ben-Dor and E. Fischbein, Acta Cryst. B 32 (1976) 667.CrossRefGoogle Scholar
  7. [7]
    D. Wiarda, T. Wenzel, M. Uhrmacher and K.P. Lieb, J. Phys. Chem. Solids 53 (1992) 1199.CrossRefGoogle Scholar
  8. [8]
    D. Wiarda and G. Weyer, Internat. J. Mod. Phys. B 7 (1993) 353.CrossRefADSGoogle Scholar
  9. [9]
    P.G. Coombs and Z.A. Munir, J. Therm. Anal. 35 (1989) 967.CrossRefGoogle Scholar
  10. [10]
    H. Tagawa, Thermochim. Acta 80 (1984) 23.CrossRefGoogle Scholar
  11. [11]
    A. Vertes and B. Zsoldos, Acta Chim. Acad. Sci. Hungar. 65 (1970) 261.Google Scholar
  12. [12]
    E.V. Margulis, M.M. Shokarev, L.A. Savtchenko, N.I. Kopylov and L.I. Bejsekeeva, Zh. Neorg. Khim. 16 (1971) 734.Google Scholar
  13. [13]
    A.H. Kamel, Z. Sawires, H. Khalifa, S.A. Saleh and A.M. Abdallah, J. Appl. Chem. Biotechnol. 22 (1972) 591.Google Scholar
  14. [14]
    H.M. Ismail, M.I. Zaki, A.M. Hussein and M.N. Magar, Powder Technol. 63 (1990) 87.CrossRefGoogle Scholar
  15. [15]
    J. Milbauer, in: The Preparation of Inorganic Compounds (Czech Chemical Society, Praha, 1947) p. 148.Google Scholar
  16. [16]
    Powder Diffraction File 1997, International Center for Diffraction Data, Pennsylvania, USA.Google Scholar
  17. [17]
    H. Braun and K.J. Gallagher, Nature Phys. Sci. 240 (1972) 13.ADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Radek Zboril
    • 1
  • Miroslav Mashlan
    • 2
  • Dagmar Krausova
    • 1
  • Petr Pikal
    • 3
  1. 1.Department of Inorganic and Physical ChemistryPalacky UniversityOlomoucCzech Republic
  2. 2.Department of Experimental PhysicsPalacky UniversityOlomoucCzech Republic
  3. 3.Research DepartmentPRECHEZAPrerovCzech Republic

Personalised recommendations