Advertisement

Hydrobiologia

, Volume 342, Issue 0, pp 241–255 | Cite as

Interactions between coot (Fulica atra) and submerged macrophytes: the role of birds in the restoration process

  • Martin R. Perrow
  • J. Hans Schutten
  • John R. Howes
  • Tim Holzer
  • F. Jane Madgwick
  • Adrian J. D. Jowitt
Article

Abstract

Grazing by herbivorous birds is often cited as an important factorin suppressing macrophyte development in shallow lakes undergoingrestoration, thus delaying the attainment of the stable clear waterstate. Development and succession of macrophyte communities andsize, diet and grazing pressure of coot (Fulica atra)populations upon macrophytes, were monitored over the seasonalcycle at ten shallow lakes of varying nutrient status, in theNorfolk Broads in eastern England. In spring, territorial breedingbirds were at relatively low density and included only a smallproportion of macrophytes in their diet, resulting in low grazingpressure on macrophytes. In summer, there was a significantrelationship between macrophyte cover and bird density,illustrating the importance of macrophytes in the dispersion phasefor birds following breeding. Macrophytes comprised the bulk ofbird diet where they were available and the consumption ofmacrophytes was up to 76 fold higher than in spring. However,losses to grazing in both periods were negligible when compared topotential growth rates documented in the literature. Grazingexperiments at two biomanipulated lakes confirmed that birds werenot responsible for limiting macrophytes during the springcolonisation phase or in the summer growth period. During theperiod of autumnal senescence and over the winter months where somemacrophyte species remain available, e.g. as developed individualsor dormant buds, grazing by birds may conceivably have an impact onthe development and structure of macrophyte populations insubsequent growing seasons.The relative importance of bird grazing compared to other factorslimiting the development of macrophytes in shallow lakes isdiscussed in the light of other experimental studies.

herbivory bird grazing bird diet macrophytecolonisation macrophyte growth seasonal population trends shallowlakes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agami, M. & Y. Waisel, 1986. The role of mallard ducks (Anas platyrhynchos) in distribution and germination of seeds of the submerged hydrophyte Najas marinaL. Oecologia 68: 473–475.Google Scholar
  2. Anderson, M. G. & J. B. Low, 1976. Use of Sago pondweed on the Delta Marsh, Manitoba. J. Wildl. Mgmt 40: 233–242.Google Scholar
  3. Best, E. P. H. & J. H. A. Dassen, 1987. A seasonal study of growth characteristics, and the levels of carbohydrates and proteins in Elodea nuttallii, Polygonum amphibiumand Phragmites australis. Aquat. Bot. 28: 353–372.Google Scholar
  4. Best, E. P. H. & H. C. W. Visser, 1987. Seasonal growth of the submerged macrophyte Ceratophyllum demersumL. in mesotrophic Lake Vechten in relation to insolation, temperature and reserve carbohydrates. Hydrobiologia 148: 231–243.Google Scholar
  5. Blindlow, I., G. Andersson, A. Hargeby & S. Johansson, 1993. Longterm pattern of alternative stable states in two shallow eutrophic lakes. Freshwat. Biol. 30: 159–167.Google Scholar
  6. Broads Authority, 1994. The Broads Plan-No Easy Answers. Broads Authority Consultation Document, Broads Authority, Norwich, England.Google Scholar
  7. Cramp, S. & K. E. L. Simmons, 1980. Handbook of the Birds of Europe the Middle East and North Africa. The Birds of the Western Palearctic, Volume II. Hawks to Bustards. Oxford University Press, Oxford, UK.Google Scholar
  8. Doef, R.,H. Coops, M. L. Streekstra & L. H. C. A. Hector, 1994. Waterplanten in het Wolderwijden Veluwemeer (1990–1993). RIZA nota-94.046, RIZA, Lelystad, Netherlands. ISBN 9036903440.Google Scholar
  9. Draulans, D. & L. Vanherck, 1987. Food and foraging of Coot Fulica atraon fish ponds during autumn migration. Wildfowl 38: 63–69.Google Scholar
  10. Esler, D., 1989. An assessment of American coot herbivory of Hydrilla. J. Wildl. Mgmt 53: 1147–1149.Google Scholar
  11. Ferns, J. & J. Kirby, 1992. Waterfowl counts in the UK. 1990–91. Wildfowl 43: 235–240.Google Scholar
  12. Giles, N., 1992. Wildlife after gravel: twenty years of practical research by the Game Conservancy and ARC. Game Conservancy, Fordingbridge, UK.Google Scholar
  13. Hargeby, A., G. Andersson, G. Blindlow & S. Johansson, 1994. Trophic web structure in a shallow eutrophic lake during a dominance shift from phytoplankton to submerged macrophytes. Hydrobiologia 279/280: 83–90.Google Scholar
  14. Harper, J. L., 1977. Population biology of plants. Academic Press Inc., London, UK.Google Scholar
  15. Hosper, S. H. & E. Jagtman, 1990. Biomanipulation additional to nutrient control for restoration of shallow lakes in The Netherlands. Hydrobiologia 200/201: 523–534.Google Scholar
  16. Howes, J. R. & M. R. Perrow, 1994. Macrophyte grazing by coot (Fulica atra) in the broads: bird-resource interactions. In Pitt, J.-A. & G. L. Phillips (eds), The Development of Biomanipulation Techniques & Control of Phosphorus Release from Sediments, EC LIFE project 92-3/UK/031, NRA Report No. No. 475121A. National Rivers Authority/Broads Authority, Bristol, UK.Google Scholar
  17. Irvine, K.,B. Moss & H. Balls, 1989. The loss of submerged plants with eutrophication II. Relationships between fish and zooplankton in a set of experimental ponds, and conclusions. Freshwat. Biol. 22: 89–107.Google Scholar
  18. Jupp, B. P. & D. H. N. Spence, 1977. Limitations of macrophytes in a eutrophic lake, Loch Leven. II. Wave action, sediments and waterfowl grazing. J. Ecol. 65: 431–446.Google Scholar
  19. Kennison, G. C. B., 1993. Aquatic macrophyte surveys of the Norfolk Broads. Unpubl. report, Broads Authority, Norwich, UK.Google Scholar
  20. Kiørboe, T., 1980. Distribution and production of submerged macrophytes in Tipper Grund (Ringkøbing Fjord, Denmark), and the impact of waterfowl grazing. J. appl. Ecol. 17: 675–687.Google Scholar
  21. Krzyzanek, E., H. Kasza, W. Krzanowski, T. Kuflikowski & G. Paj{ie255-01}k, 1986. Succession of communities in the Goczałkowice Dam Reservoir in the period 1955–1982. Arch. Hydrobiol. 106: 21–43.Google Scholar
  22. Lammens, E. H. R. R., R. D. Gulati, M.-L. Meijer & E. van Donk, 1990. The first biomanipulation conference: a synthesis. Hydrobiologia 200/201: 619–628.Google Scholar
  23. Lauridsen, T. L., E. Jeppesen & F. Østergaard Andersen, 1993. Colonization of submerged macrophytes in shallow fish manipulated Lake Vaeng impact of sediment composition and waterfowl grazing. Aquat. Bot. 46: 1–15.Google Scholar
  24. Lauridsen, T. L., E. Jeppesen & M. Søndergaard, 1994. Colonization and succession of submerged macrophytes in shallow Lake Vaeng during the first five years following fish manipulation. Hydrobiologia 275/276: 233–242.Google Scholar
  25. Lillie, R. A. & J. O. Evrard, 1994. Influence of macroinvertebrates and macrophytes on waterfowl utilization of wetlands in the Prairie Pothole Region of northwestern Wisconsin. Hydrobiologia 279/280: 235–246.Google Scholar
  26. Lodge, D. M., 1991. Herbivory on freshwater macrophytes. Aquat. Bot. 41: 195–224.Google Scholar
  27. McKinnon, S. L. & S. F. Mitchell, 1994. Eutrophication and black swan (Cygnus atratusLatham) populations: tests of two simple relationships. Hydrobiologia 279/280: 163–170.Google Scholar
  28. Meijer, M.-L., E. Jeppesen, E. van Donk, B. Moss, M. Scheffer, E. Lammens, E. van Nes, J. A. van Berkum, G. L. de Jong, B. A. Faafeng & J. P. Jensen, 1994. Long-term responses to fishstock reduction in small shallow lakes: interpretation of five-year results of four biomanipulation cases in The Netherlands and Denmark. Hydrobiologia 275/276: 457–466.Google Scholar
  29. Mitchell, S. F., D. P. Hamilton, W. S. MacGibbon, P. K. B. Nayar & R. N. Reynolds, 1988. Interactions between phytoplankton, submerged macrophytes, black swans and zooplankton in a shallow lake. Int. Revue ges. Hydrobiol. 73: 145–170.Google Scholar
  30. Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200/201: 367–377.Google Scholar
  31. Moss, B., H. Balls, K. Irvine & J. H. Stansfield, 1986. Restoration of two lowland lakes by isolation from nutrient-rich water sources with and without removal of sediment. J. appl. Ecol. 23: 391–414.Google Scholar
  32. Moss, B., J. H. Stansfield & K. Irvine, 1990. Problems in the restoration of a hypertrophic lake by diversion of a nutrient-rich inflow. Verh. int. Ver. Limnol. 24: 409–425.Google Scholar
  33. Moss, B., J. H. Stansfield, K. Irvine, M. R. Perrow & G. L. Phillips, 1996. Progressive restoration of a shallow lake–a twelve-year experiment in isolation, sediment removal and biomanipulation. J. appl. Ecol. 33: 71–86.Google Scholar
  34. National Environmental Research Institute, Denmark, 1994. Report and activities 1993–94. Ministry of the Environment, Roskilde, Denmark.Google Scholar
  35. National Research Council (US), 1992. Restoration of Aquatic Ecosystems-Science, Technology and Public Policy. National Academy Press, Washington D.C, USA: 552 pp.Google Scholar
  36. Palmer, M., 1992. A botanical classification of standing waters in Great Britain. JNCC Publications, Peterborough, England. ISBN 1 873701 27 6.Google Scholar
  37. Perrow, M. R., 1990; Biomanipulation in Broadland. In O’Grady, K. T., A. J. B. Butterworth, P. B. Spillett & J. C. J. Domaniewski (eds), Fisheries in the Year 2000, Proceedings of the 21st anniversary conference of the Institute of Fisheries Management. IFM, Nottingham, England: 335–337.Google Scholar
  38. Perrow, M. R., B. Moss & J. H. Stansfield, 1994. Trophic interactions in a shallow lake following a reduction in nutrient loading: a long term study. Hydrobiologia 275/276: 43–52.Google Scholar
  39. Phillips, G. L., 1976. An Investigation of the Distribution and Growth of Aquatic Plants in some of the Norfolk Broads. Unpubl. PhD thesis, University of East Anglia, Norwich, England.Google Scholar
  40. Phillips, G. L., D. F. Eminson & B. Moss, 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquat. Bot. 4: 103–126.Google Scholar
  41. Phillips, G. L., M. R. Perrow & J. H. Stansfield, 1996. Manipulating the fish-zooplankton interaction in shallow lakes: a tool for restoration. In Greenstreet, S. P. R. & M L. Tasker (eds), Aquatic Predators and Their Prey. Blackwell Scientific Publications Ltd., Oxford. England: 174–183.Google Scholar
  42. Ryding, S.-O. & W. Rast (eds), 1989. The Control of Eutrophication of Lakes and Reservoirs. UNESCO, Man & the Biosphere Series, Vol. 1, Parthenon Publishing Group, Lancs. England.Google Scholar
  43. Sandsten, H., 1995. Can waterfowl grazing trigger a shift from clear to turbid water in shallow Lake Krankesjon? Master thesis, University of Lund, Sweden.Google Scholar
  44. Sas, H., 1989. Lake restoration by reduction of nutrient loading: Expectations, experiences, extrapolations. Academia Verlag 497 pp.Google Scholar
  45. Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative Equilibria in Shallow Lakes. TREE 8: 275–279.Google Scholar
  46. Schutten, J., J. A. van der Velden & H. Smit, 1994. Submerged macrophytes in the recently freshened lake system Volkerak-Zoom (The Netherlands), 1987–1991. Hydrobiologia 275/276: 207–218.Google Scholar
  47. Seago, M. J., 1967. Birds of Norfolk. Jarrold & Sons, Norwich, England.Google Scholar
  48. Søndergaard, M., L. Bruun, T. L. Lauridsen, E. Jeppesen & T. Vindbaek Madsen, in press. The impact of grazing waterfowl on submerged macrophytes: in situexperiments in a shallow eutrophic lake. Aquat. Bot.Google Scholar
  49. Stansfield, J. H., 1994. The extent of macrophyte recovery at biomanipulated sites, and experimental evidence that bird grazing and/or water chemistry affect macrophyte establishment. In Pitt, J-A.&s G. L. Phillips (eds), The Development of Biomanipulation Techniques & Control of Phosphorus Release from Sediments, EC LIFE project 923/UK/031, NRA Report No. No. 475/2/A. National Rivers Authority/Broads Authority, Bristol, UK.Google Scholar
  50. Van Donk, E., E. De Deckere, J. G. P. Klein Breteler & J. T. Meulemans 1994. Herbivory by waterfowl and fish on macrophytes in a biomanipulated lake: effects on long-term recovery. Ver. int. Ver. Limnol. 25: 2139–2143.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Martin R. Perrow
    • 1
  • J. Hans Schutten
    • 2
  • John R. Howes
    • 1
  • Tim Holzer
    • 1
  • F. Jane Madgwick
    • 3
  • Adrian J. D. Jowitt
    • 1
  1. 1.ECON, School of Biological SciencesUniversity of East AngliaNorwichUK
  2. 2.ARISE, Aquatic Ecotoxicology SectionUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Broads AuthorityNorwichUK

Personalised recommendations