Russian Journal of Genetics

, Volume 37, Issue 8, pp 853–867 | Cite as

Genetics and the Origin of Human “Races”

  • E. Ya. Tetushkin


In the last decades, the concept of human races was considered scientifically unfounded as it was not confirmed by genetic evidence. None of the racial classifications, which strongly differ in the number of races and their composition, reflects actual genetic similarity and genealogy of human populations inferred from variability of classical markers and DNA regions. Moreover, intercontinental (“interracial”) variability was shown to be far lower than that within populations: the former constitutes 7 to 10% of the total genetic variation and the latter about 85% of it. It is believed that the low level of differentiation of regional population groups contradicts their race status and suggests a recent origin of humans from one ancestral population. The results of studies of various genetic systems are in agreement with the latter conclusion rejecting the hypothesis of regional continuity. According to this hypothesis, the populations of continents regarded as large races have developed during long evolution from local types of archaic humans, in particular, Neanderthals. Phenotypic similarity of different, sometimes unrelated, populations united into one “race” is explained by strong selection since race-diagnostic traits characterize body surface and thus are directly subjected to the influence of environmental (primarily climatic) factors. It has been recently established that variability of the most important of these traits, body and hair pigmentation, is largely controlled by one locus (MC1R), which accounts for its high evolutionary lability. Other traits used for race identification are also likely to be labile and controlled by major genes. However, the fact that the currently existing race classifications are groundless does not mean that such classifications are impossible in principle. Commonly used argumentation (races do not exist because populations are not genetically separated) does not hold water. A polytypic species is characterized by genetic continuity of allopatric populations rather than the presence of narrow genetic boundaries between them. Borderlines between races are usually conventional and arbitrary. As to intergroup variation in humans, it is indeed low but comparable with that in a number of other species. There are no obstacles to the development of genetic systematics of human races.


Ancestral Population Total Genetic Variation Race Classification Human Race Recent Origin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tishkov, V.A., Anthropology of Russian Transformations, EO, 2000, no. 1, pp. 3-19.Google Scholar
  2. 2.
    Korotkevich, G.V., Race: A Myth or a Real Phenomenon, Priroda, 1998, no. 12, pp. 102-103.Google Scholar
  3. 3.
    Cavalli-Sforza, L.L., Menozzi, P., and Piazza, A., The History and Geography of Human Genes, Princeton: Princeton Univ. Press, 1994.Google Scholar
  4. 4.
    Bunak, V.V., Rod Homo, ego vozniknovenie i posleduyushchaya evolyutsiya (The Genus Homo, Its Origin and Further Evolution), Moscow: Nauka, 1980.Google Scholar
  5. 5.
    Cheboksarov, N.N. and Cheboksarova, I.A., Narody, rasy, kul'tury (Ethnoses, Races, Cultures), Moscow: Nauka, 1985.Google Scholar
  6. 6.
    Alekseev, V.P., Stanovlenie chelovechestva (Formation of Mankind), Moscow: Politizdat, 1984.Google Scholar
  7. 7.
    Tetushkin, E.Ya., Genetic and Morphological Distances between Great Human Races, Genetika (Moscow), 1989, vol. 25, no. 5, pp. 918-922.Google Scholar
  8. 8.
    Cavalli-Sforza, L.L. and Cavalli-Sforza, F., The Great Human Diasporas: The History of Diversity and Evolution, Reading: Addison-Wesley, 1995.Google Scholar
  9. 9.
    Stoneking, M., How It All Happened, Nat. Genet., 2000, vol. 25, p. 379.Google Scholar
  10. 10.
    Vogel, F. and Motulsky, A.G., Human Genetics: Problems and Approaches, Berlin: Springer-Verlag, 1986.Google Scholar
  11. 11.
    Bruk, S.I. and Cheboksarov, N.N., Human Races, in Narody mira (World Ethnoses), Moscow: Sov. Entsiklopediya, 1988, pp. 16-25.Google Scholar
  12. 12.
    Webster's Seventh New Collegiate Dictionary, Spring-field: G&C Merriam, 1969.Google Scholar
  13. 13.
    Ammerman, A.J. and Cavalli-Sforza, L.L., The Neolithic Transition and the Genetics of Populations in Europe, Princeton: Princeton Univ. Press, 1984.Google Scholar
  14. 14.
    Derish, P.A. and Sokal, R.R., A Classification of European Populations Based on Gene Frequencies and Cranial Measurements: A Map-Quadrate Approach, Hum. Biol., 1988, vol. 60, pp. 801-824.Google Scholar
  15. 15.
    Sokal, R.R., Genetic, Geographic, and Linguistic Distances in Europe, Proc. Natl. Acad. Sci. USA, 1988, vol. 85, pp. 1722-1726.Google Scholar
  16. 16.
    Sokal, R.R., Oden, N.L., Legendre, P., et al., Genetics and Language in European Populations, Am. Nat., 1990, vol. 135, pp. 157-175.Google Scholar
  17. 17.
    Roginskii, Ya.Ya. and Levin, M.G., Antropologiya (Anthropology), Moscow: Vysshaya Shkola, 1978.Google Scholar
  18. 18.
    Tegako, L.I. and Salivon, I.I., Osnovy sovremennoi antropologii (Basics of Modern Anthropology), Minsk: Universitetskoe, 1989.Google Scholar
  19. 19.
    Cavalli-Sforza, L.L. and Edwards, A.W.F., Analysis of Human Evolution, Genetics Today: Proc. XI Int. Congr. of Genetics (The Hague, Netherlands, September, 1963), Oxford: Pergamon, 1964, pp. 923-933.Google Scholar
  20. 20.
    Cavalli-Sforza, L.L., Origin and Differentiation of Human Races, Proc. R.A.I., 1972, pp. 15-25.Google Scholar
  21. 21.
    Nei, M., Evolution of Human Races at the Gene Level, Human Genetics, part A: The Unfolding Genome, New York: Alan Liss, 1982, pp. 167-181.Google Scholar
  22. 22.
    Nei, M. and Roychoudhury, A.K., Genetic Relationship and Evolution of Human Races, Evol. Biol., New York: Plenum, 1982, vol. 14, pp. 1-59.Google Scholar
  23. 23.
    Nei, M. and Roychoudhury, A.K., Evolutionary Relationships of Human Populations on a Global Scale, Mol. Biol. Evol., 1993, vol. 10, pp. 927-943.Google Scholar
  24. 24.
    Alekseev, V.P., Geografiya chelovecheskikh ras (Geography of Human Races), Moscow: Mysl', 1974.Google Scholar
  25. 25.
    Cavalli-Sforza, L.L., Piazza, A., and Menozzi, P., Reconstruction of Human Evolution: Bringing together Genetic, Archaeological, and Linguistic Data, Proc. Natl. Acad. Sci. USA, 1988, vol. 85, pp. 6002-6006.Google Scholar
  26. 26.
    Cavalli-Sforza, L.L., Genes, Peoples and Languages, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 7719-7724.Google Scholar
  27. 27.
    Tetushkin, E.Ya., Molecular Paleogenetics of Primates, Genetika (Moscow), 1997, vol. 33, no. 3, pp. 293-307.Google Scholar
  28. 28.
    Owens, K. and King, M.-C., Genomic Views of Human History, Science, 1999, vol. 286, pp. 451-453.Google Scholar
  29. 29.
    Boyde, W.C., Genetics and the Human Race, Science, 1963, vol. 140, pp. 1057-1064.Google Scholar
  30. 30.
    Dubinin, N.P., The Race Problem and Modern Genetics, Usp. Sovrem. Biol., 1972, vol. 73, no. 2, pp. 209-230.Google Scholar
  31. 31.
    Lewontin, R.C., The Apportionment of Human Diversity, Evolutionary Biology, New York: Appleton-Century-Grofts, 1972, vol. 6, pp. 381-398.Google Scholar
  32. 32.
    Nei, M. and Roychoudhury, A.K., Gene Differences between Caucasian, Negro, and Japanese Populations, Science, 1972, vol. 177, pp. 434-436.Google Scholar
  33. 33.
    Nei, M. and Roychoudhury, A.K., Genic Variation within and between the Three Major Races of Man, Caucasoids, Negroids, and Mongoloids, Am. J. Hum. Genet., 1974, vol. 26, no. 4, pp. 421-443.Google Scholar
  34. 34.
    Mitton, J.B., Genetic Differentiation of Races of Man as Judged by Single-Locus and Multilocus Analyses, Am. Nat., 1977, vol. 111, pp. 203-212.Google Scholar
  35. 35.
    Chakraborty, R., Single-Locus and Multilocus Analyses of Genetic Differentiation of Races of Man: A Critique, Am. Nat., 1978, vol. 112, pp. 1134-1138.Google Scholar
  36. 36.
    Lewontin, R.C., Single-Locus and Multilocus Measures of Genetic Distance between Groups, Am. Nat., 1978, vol. 112, pp. 1138-1139.Google Scholar
  37. 37.
    Mitton, J.B., Measurement of Differentiation: Reply to Lewontin, Powell, and Taylor, Am. Nat., 1978, vol. 112, pp. 1142-1144.Google Scholar
  38. 38.
    Powell, J.R. and Taylor, C.E., Are Human Races “Substantially” Different Genetically?, Am. Nat., 1978, vol. 112, pp. 1139-1142.Google Scholar
  39. 39.
    Nei, M., Genetic Differences between Human Races, Am. Nat., 1981, vol. 117, pp. 88-89.Google Scholar
  40. 40.
    Neel, J.V., The Major Ethnic Groups: Diversity in the Midst of Similarity, Am. Nat., 1981, vol. 117, pp. 83-87.Google Scholar
  41. 41.
    Nei, M., Human Evolution at the Molecular Level, Population Genetics and Molecular Evolution, Tokyo: Japan Sci. Soc., 1985, pp. 41-64.Google Scholar
  42. 42.
    Nei, M. and Livshits, G., Evolutionary Relationships of Europeans, Asians, and Africans at the Molecular Level, Population Biology of Genes and Molecules, Tokyo: Baifukan, 1990, pp. 251-265.Google Scholar
  43. 43.
    Nei, M. and Livshits, G., Genetic Relationships of Europeans, Asians and Africans and the Origin of Modern Homo sapiens, Hum. Hered., 1989, vol. 39, pp. 276-281.Google Scholar
  44. 44.
    Latter, B.D.H., Genetic Differentiation within and between Populations of the Major Human Subgroups, Am. Nat., 1980, vol. 116, pp. 220-237.Google Scholar
  45. 45.
    Ryman, N., Chakraborty, R., and Nei, M., Differences in the Relative Distribution of Human Gene Diversity between Electrophoretic and Red and White Cell Antigen Loci, Hum. Hered., 1983, vol. 33, pp. 93-102.Google Scholar
  46. 46.
    Balanovskaya, E.V. and Rychkov, Yu.G., Ethnical Genetics: Ethnogeographical Diversity of the Gene Pool in World Ethnoses, Genetika (Moscow), 1990, vol. 26, no. 1, pp. 114-121.Google Scholar
  47. 47.
    Spitsyn, V.A., Biokhimicheskii polimorfizm cheloveka (Biochemical Polymorphism of Humans), Moscow: Mosk. Gos. Univ., 1985.Google Scholar
  48. 48.
    Barbujani, G., Magagni, A., Minch, E., and Cavalli-Sforza, L.L., The Apportionment of Human DNA Diversity, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 4516-4519.Google Scholar
  49. 49.
    Przeworski, M., Hudson, R.R., and Rienzo, A.Di., Adjusting the Focus on Human Variation, Trends. Genet., 2000, vol. 16, no. 7, pp. 296-302.Google Scholar
  50. 50.
    Seielstad, M.T., Minch, E., and Cavalli-Sforza, L.L., Genetic Evidence for a Higher Female Migration Rate in Humans, Nat. Genet., 1998, vol. 20, pp. 278-280.Google Scholar
  51. 51.
    Stoneking, M., Women on the Move, Nat. Genet., 1998, vol. 20, pp. 219-220.Google Scholar
  52. 52.
    Excoffier, L., Smouse, P.E., and Quattro, J.M., Analysis of Molecular Variance Inferred from Metric Distances among DNA Haplotypes: Application to Human Mitochondrial DNA Data, Genetics, 1992, vol. 131, pp. 479-491.Google Scholar
  53. 53.
    Tetushkin, E.Ya., Chronology of the Human Evolutionary History, Usp. Sovrem. Biol., 2000, vol. 120, no. 3, pp. 227-239.Google Scholar
  54. 54.
    Swisher, C.C. III Rink, W.J., Anton, S.C., et al., Latest Homo erectus of Java: Potential Contemporaneity with Homo sapiens in Southeast Asia, Science, 1996, vol. 274, pp. 1870-1874.Google Scholar
  55. 55.
    Stringer, C., Human Evolution and Biological Adaptation in the Pleistocene, in Hominid Evolution, London: Academic, 1984, pp. 55-83.Google Scholar
  56. 56.
    Smith, F.H., Continuity and Change in the Origin of Modern Homo sapiens, Z. Morph. Anthrop., 1985, vol. 75, pp. 197-222.Google Scholar
  57. 57.
    Andrews, P., Fossil Evidence on Human Origins and Dispersal, Cold Spring Harbor Symp. Quant. Biol., 1986, vol. LI, pp. 419-428.Google Scholar
  58. 58.
    Simons, E.L., Human Origins, Science, 1989, vol. 245, pp. 1343-1350.Google Scholar
  59. 59.
    Delson, E., Fossil Human, New York: McGraw-Hill, 1997, vol. 7, pp. 446-458.Google Scholar
  60. 60.
    Wood, B. and Collard, M., The Human Genus, Science, 1999, vol. 284, pp. 65-71.Google Scholar
  61. 61.
    Stringer, C.B. and Burleigh, R., The Neanderthal Problem and the Prospects for Direct Dating of Neanderthal Remains, Bull. Br. Mus. Nat. Hist. (Geol.), 1981, vol. 35, pp. 225-241.Google Scholar
  62. 62.
    Zubov, A.A., Questionable Issues in Anthropogenesis, Chelovek, 1997, no. 1, pp. 5-16.Google Scholar
  63. 63.
    Zubov, A.A., Natural History of the Ancient Mankind, Priroda, 1998, no. 1, pp. 76-87.Google Scholar
  64. 64.
    Stringer, C.B., The Origin of Modern Humans, V Mire Nauki, 1991, no. 2, pp. 54-61.Google Scholar
  65. 65.
    Stringer, C.B., Homo sapiens: Single or Multiple Origin?, in Human Origins, Oxford: Clarendon, 1989, pp. 63-80.Google Scholar
  66. 66.
    Stringer, C.B., The Asian Connection, New Sci., 1990, vol. 128, pp. 33-37.Google Scholar
  67. 67.
    Stringer, C.B., The Emergence of Modern Humans, Sci. Am., 1990, vol. 262, pp. 98-104.Google Scholar
  68. 68.
    Stringer, C.B. and Andrews, P., Genetic and Fossil Evidence for the Origin of Modern Humans, Science, 1988, vol. 239, pp. 1263-1268.Google Scholar
  69. 69.
    Rightmire, G.P., Human Origin(s), TREE, 1996, vol. 11, pp. 520-521.Google Scholar
  70. 70.
    Wolpoff, M.H., Human Evolution at the Peripheries: The Pattern at the Eastern Edge, in Hominid Evolution: Past, Present and Future, New York: Alan Liss, 1985, pp. 355-365.Google Scholar
  71. 71.
    Wolpoff, M.H. and Zhi Wu Xin Thorne, A.G., Modern Homo sapiens Origins: A General Theory of Hominid Evolution Involving the Fossil Evidence from East Asia, in The Origins of Modern Humans: A World Survey of the Fossil Evidence, New York: Alan Liss, 1984, pp. 411-483.Google Scholar
  72. 72.
    Roginskii, Ya.Y., Problemy antropogeneza (Problems of Anthropogenesis), Moscow: Vysshaya Shkola, 1977.Google Scholar
  73. 73.
    Cann, R.L., Stoneking, M., and Wilson, A.C., Mitochondrial DNA and Human Evolution, Nature, 1987, vol. 325, pp. 31-36.Google Scholar
  74. 74.
    Wilson, A.C., Stoneking, M., Cann, R.L., et al., Mitochondrial Clans and the Age of Our Common Mother, Human Genetics: Proc. Int. Congr., Berlin: Springer-Verlag, 1987, pp. 158-164.Google Scholar
  75. 75.
    Stoneking, M. and Cann, R.L., African Origin of Human Mitochondrial DNA, in The Human Revolution: Behavioral and Biological Perspectives on the Origins of Modern Humans, Edinburgh: Edinburgh Univ. Press, 1989, pp. 17-30.Google Scholar
  76. 76.
    Stoneking, M., Sherry, S.T., Redd, A.J., and Vigilant, L., New Approaches to Dating Suggest a Recent Age for the Human mtDNA Ancestor, Phil. Trans. R. Soc. London, B, 1992, vol. 337, pp. 167-175.Google Scholar
  77. 77.
    Stoneking, M., Recent African Origin of Human Mitochondrial DNA: Review of the Evidence and Current Status of the Hypothesis, in Progress in Population Genetics and Human Evolution, Berlin: Springer-Verlag, 1997, pp. 1-13.Google Scholar
  78. 78.
    Eyre-Walker, A., Smith, N.H., and Smith, M., How Clonal Are Human Mitochondria?, Proc. R. Soc. London, B, 1999, vol. 266, pp. 477-483.Google Scholar
  79. 79.
    Awadalla, P., Eyre-Walker, A., and Smith, J.M., Linkage Disequilibrium and Recombination in Hominid Mitochondrial DNA, Science, 1999, vol. 286, pp. 2524-2525.Google Scholar
  80. 80.
    Arctander, P., Mitochondrial Recombination?, Science, 1999, vol. 284, pp. 2090-2091.Google Scholar
  81. 81.
    Strauss, E., Can Mitochondrial Clocks Keep Time?, Science, 1999, vol. 283, pp. 1435-1438.Google Scholar
  82. 82.
    Merriweather, D.A. and Kaestle, F.A., Mitochondrial Recombination?, Science, 1999, vol. 285, p. 837.Google Scholar
  83. 83.
    Macaulay, V., Richards, M., and Sykes, B., Mitochondrial DNA Recombination-No Need to Panic, Proc. R. Soc. London, B, 1999, vol. 266, pp. 2037-2039.Google Scholar
  84. 84.
    Darlu, P. and Tassy, P., Roots (A Comment on the Evolution of Mitochondrial DNA and the Origins of Modern Humans), Hum. Evol., 1987, vol. 2, pp. 407-412.Google Scholar
  85. 85.
    Excoffier, L. and Langaney, A., Origin and Differentiation of Human Mitochondrial DNA, Am. J. Hum. Genet., 1989, vol. 44, pp. 73-85.Google Scholar
  86. 86.
    Templeton, A.R., Human Origins and Analysis of Mitochondrial DNA Sequences, Science, 1992, vol. 255, p. 737.Google Scholar
  87. 87.
    Horai, S., Hayasaka, K., Kondo, R., et al., Man's Place in Hominoidea Revealed by Mitochondrial DNA Genealogy, J. Mol. Evol., 1992, vol. 35, pp. 32-43.Google Scholar
  88. 88.
    Hasegawa, M., Rienzo, A.Di., Kocher, T.D., and Wilson, A.C., Toward a More Accurate Time Scale for the Human Mitochondrial DNA Tree, J. Mol. Evol., 1993, vol. 37, pp. 347-354.Google Scholar
  89. 89.
    Goldstein, D.B., Linares, A.R., Cavalli-Sforza, L.L., and Feldman, M.W., Genetic Absolute Dating Based on Microsatellites and the Origin of Modern Humans, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 6723-6727.Google Scholar
  90. 90.
    Nei, M., Genetic Support for the Out-of-Africa Theory of Human Evolution, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 6720-6722.Google Scholar
  91. 91.
    Cavalli-Sforza, L.L., The DNA Revolution in Population Genetics, Trends. Genet., 1998, vol. 14, no. 2, pp. 60-65.Google Scholar
  92. 92.
    Jorde, L.B., Watkins, W.S., Bamshad, M.J., et al., The Distribution of Human Genetic Diversity: A Comparison of Mitochondrial, Autosomal, and Y-Chromosome Data, Am. J. Hum. Genet., 2000, vol. 66, pp. 979-988.Google Scholar
  93. 93.
    Fischman, J., Evidence Mounts for Our African Origins—An Alternatives, Science, 1996, vol. 271, p. 1364.Google Scholar
  94. 94.
    Disotell, T.R., Human Evolution: Sex-Specific Contribution to Genome Variation, Curr. Biol., 1999, vol. 9, pp. R29-R31.Google Scholar
  95. 95.
    Disotell, T.R., Human Evolution: Origins of Modern Humans Still Look Recent, Curr. Biol., 1999, vol. 9, pp. R647-R650.Google Scholar
  96. 96.
    Pääbo, S., Human Evolution, Trends Genet., 1999, vol. 15, no. 12, pp. M13-M16.Google Scholar
  97. 97.
    Tishkoff, S.A., Dietzsch, E., Speed, W., et al., Global Patterns of Linkage Disequilibrium at the CD4 Locus and Modern Human Origins, Science, 1996, vol. 271, pp. 1380-1387.Google Scholar
  98. 98.
    Quintana-Murci, L., Semino, O., Bandelt, H.-J., et al., Genetic Evidence of an Early Exit of Homo sapiens from Africa through Eastern Africa, Nat. Genet., 1999, vol. 23, pp. 437-441.Google Scholar
  99. 99.
    Stringer, C., Coasting out of Africa, Nature, 2000, vol. 405, pp. 24-27.Google Scholar
  100. 100.
    Harris, E.E. and Hey, J., X Chromosome Evidence for Ancient Human Histories, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 3320-3324.Google Scholar
  101. 101.
    Pennisi, E., Genetic Study Shakes up Out-of-Africa Theory, Science, 1999, vol. 283, p. 1828.Google Scholar
  102. 102.
    Krings, M., Stone, A., Schmitz, R.W., et al., Neanderthal DNA Sequences and the Origin of Modern Humans, Cell (Cambridge, Mass.), 1997, vol. 90, pp. 19-30.Google Scholar
  103. 103.
    Krings, M., Geisert, H., Schmitz, R.W., et al., DNA Sequence of the Mitochondrial Hypervariable Region II from the Neanderthal Type Specimen, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 5581-5585.Google Scholar
  104. 104.
    Ovchinnikov, I.V., Götherström, A., Romanova, G.P., et al., Molecular Analysis of Neanderthal DNA from the Northern Caucasus, Nature, 2000, vol. 404, pp. 490-493.Google Scholar
  105. 105.
    Krings, M., Capelli, C., Tshentscher, F., et al., A View of Neanderthal Genetic Diversity, Nat. Genet., 2000, vol. 26, pp. 144-146.Google Scholar
  106. 106.
    Nordborg, M., On the Probability of Neanderthal Ancestry, Am. J. Hum. Genet., 1998, vol. 63, pp. 1237-1240.Google Scholar
  107. 107.
    Wall, J.D., Detecting Ancient Admixture in Humans Using Sequence Polymorphism Data, Genetics, 2000, vol. 154, pp. 1271-1279.Google Scholar
  108. 108.
    Duarte, C., Mauricio, J., Pettitt, P.B., et al., The Early Upper Paleolithic Human Skeleton from the Abrigo Do Lagar Velho (Portugal) and Modern Human Emergence in Iberia, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 7604-7609.Google Scholar
  109. 109.
    Tattersall, I. and Schwartz, J.H., Hominids and Hybrids: The Place of Neanderthals in Human Evolution, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 7117-7119.Google Scholar
  110. 110.
    Harpending, H.C., Batzer, M.A., Gurven, M., et al., Genetic Traces of Ancient Demography, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 1961-1967.Google Scholar
  111. 111.
    Jorde, L.B., Bamshad, M.J., and Rogers, A.R., Using Mitochondrial and Nuclear DNA Markers to Reconstruct Human Evolution, BioEssays, 1998, vol. 20, pp. 126-136.Google Scholar
  112. 112.
    Morin, P.A., Moore, J.J., Chakraborty, R., et al., Kin Selection, Social Structure, Gene Flow, and the Evolution of Chimpanzees, Science, 1994, vol. 265, pp. 1193-1201.Google Scholar
  113. 113.
    Crouau-Roy, B., Service, S., Slatkin, M., and Freimer, N., A Fine-Scale Comparison of the Human and Chimpanzee Genomes: Linkage, Linkage Disequilibrium and Sequence Analysis, Hum. Mol. Genet., 1996, vol. 5, pp. 1131-1137.Google Scholar
  114. 114.
    Takahata, N., Relaxed Natural Selection in Human Populations during the Pleistocene, Jpn. J. Genet., 1993, vol. 68, pp. 539-547.Google Scholar
  115. 115.
    Valverde, P., Healy, E., Jackson, I., et al., Variants of the Melanocyte-Stimulating Hormone Receptor Gene Are Associated with Red Hair and Fair Skin in Humans, Nat. Genet., 1995, vol. 11, pp. 328-330.Google Scholar
  116. 116.
    Schiöth, H.B., Phillips, S.R., Rudzish, R., et al., Loss of Function Mutations of the Human Melanocortin 1 Receptor Are Common and Are Associated with Red Hair, Biochem. Biophys. Res. Commun., 1999, vol. 260, pp. 488-491.Google Scholar
  117. 117.
    Rana, B.K., Hewett-Emmett, D., Jin, L., et al., High Polymorphism at the Human Melanocortin 1 Receptor Locus, Genetics, 1999, vol. 151, pp. 1547-1557.Google Scholar
  118. 118.
    Jablonski, N. and Chaplin, G., The Evolution of Human Skin Coloration, J. Hum. Evol., 2000, vol. 39, pp. 57-106.Google Scholar
  119. 119.
    Vorontsov, N.N., Razvitie evolyutsionnykh idei v biologii (Development of Evolutionary Concepts in Biology), Moscow: UNTs DO Mosk. Gos. Univ., 1999.Google Scholar
  120. 120.
    Mayr, E., Populations, Species, and Evolution, Cambridge (Massachusetts): Harvard Univ. Press, 1970.Google Scholar
  121. 121.
    Dobzhansky, T., Genetic Entities in Hominid Evolution, in Classification and Human Evolution, Chicago: Aldine, 1963, pp. 347-362.Google Scholar
  122. 122.
    Dobzhansky, T., Evolution of Mankind in the Light of Population Genetics, Proc. XII Int. Congr. on Genetics, 1969, vol. 3, pp. 281-292.Google Scholar
  123. 123.
    Bowcock, A.M., Ruiz-Linares, A., Tomfohrde, J., et al., High Resolution of Human Evolutionary Trees with Polymorphic Microsatellites, Nature, 1994, vol. 368, pp. 455-457.Google Scholar
  124. 124.
    Mayr, E., Animal Species and Evolution, Cambridge: Belknap, 1963.Google Scholar
  125. 125.
    Nei, M., Analysis of Gene Diversity in Subdivided Populations, Proc. Natl. Acad. Sci. USA, 1973, vol. 70, pp. 3321-3323.Google Scholar
  126. 126.
    Nei, M., Molecular Evolutionary Genetics, New York: Columbia Univ. Press, 1987.Google Scholar
  127. 127.
    Ward, R.D., Skibinski, D.O.F., and Woodwark, M., Protein Heterozygosity, Protein Structure, and Taxonomic Differentiation, Evol. Biol., 1992, vol. 26, pp. 73-159.Google Scholar
  128. 128.
    Barton, N.H., Population Genetics: A New Apportionment of Human Diversity, Curr. Biol., 1997, vol. 7, pp. R757-R758.Google Scholar
  129. 129.
    Arnason, U., Xu, X., Gullberg, A., and Graur, D., The “Phoca Standart”: An External Molecular Reference for Calibrating Recent Evolutionary Divergences, J. Mol. Evol., 1996, vol. 43, pp. 41-45.Google Scholar
  130. 130.
    Xu, X. and Arnason, U., The Mitochondrial DNA Molecule of Sumatran Orangutan and a Molecular Proposal for Two (Bornean and Sumatran) Species of Orangutan, J. Mol. Evol., 1996, vol. 43, pp. 431-437.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • E. Ya. Tetushkin
    • 1
  1. 1.Vavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia

Personalised recommendations