Russian Journal of Plant Physiology

, Volume 48, Issue 4, pp 523–544 | Cite as

Physiological Aspects of Cadmium and Lead Toxic Effects on Higher Plants

  • I. V. Seregin
  • V. B. Ivanov


Using the examples of cadmium and lead, the review considers the various toxic effects exerted by these heavy metals. Putative specific and nonspecific mechanisms of the toxic effects of the heavy metals and plant responses are discussed together with the issue of Cd and Pb accumulation in various plant organelles, cells, tissues, and organs. The basic mechanisms providing for plant resistance to excess Cd and Pb are elucidated. These data are used to schematically outline the changes in plant metabolism produced by these heavy metals.

cadmium lead stress mechanisms of action tolerance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sanita di Toppi, L. and Gabbrielli, R., Response to Cadmium in Higher Plants, Environ. Exp. Bot., 1999, vol. 41, pp. 105-130.Google Scholar
  2. 2.
    Baker, A.J.M., Metal Tolerance, New Phytol., 1987, vol. 106, pp. 93-111.Google Scholar
  3. 3.
    Antosiewicz, D.M., Adaptation of Plants to an Environment Polluted with Heavy Metals, Acta. Soc. Bot. Polon., 1992, vol. 61, pp. 281-299.Google Scholar
  4. 4.
    Salt, D.E., Blaylock, M., Kumar, N.P.B.A., Dushenkov, V., Ensley, B.D., Chet, I., and Raskin, I., Phytoremediation: A Novel Strategy for the Removal of Toxic Metals from the Environment Using Plants, Biotechnology, 1995, vol. 13, pp. 468-474.Google Scholar
  5. 5.
    Alekseeva-Popova, N.V., Toxic Effect of Lead on Higher Plants, Ustoichivost' k tyazhelym metallam dikorastushchikh vidov (Tolerance of Plant Species Grown in the Wild to Heavy Metals), Alekseeva-Popova, N.V., Ed., Leningrad: Lenuprizdat, 1991, pp. 92-100.Google Scholar
  6. 6.
    Bingham, F.T., Metal Ions in Biological Systems, Concepts on Metal Ion Toxicity, Singel, H. and Singel, A., Eds., New York: Marcel Dekker, 1986. Translated under the title Nekotorye voprosy toksichnosti ionov metallov, Moscow: Mir, 1993.Google Scholar
  7. 7.
    Ernst, W.H.O., Effects of Heavy Metals in Plants at the Cellular and Organismic Level, Ecotoxicology. Ecological Fundamentals, Chemical Exposure and Biological Effects, Schuurmann, G. and Markert, B., Eds., Heidelberg: Wiley and Sons, 1999, pp. 587-620.Google Scholar
  8. 8.
    Morel, J.L., Mench, M., and Guckert, A., Measurement of Pb, Cu and Cd Binding with Mucilage Exudates from Maize (Zea mays L.) Roots, Biol. Fertil. Soils, 1986, vol. 2, pp. 29-34.Google Scholar
  9. 9.
    Cutler, J.M. and Rains, D.M., Characterization of Cadmium Uptake by Plant Tissue, Plant Physiol., 1974, vol. 54, pp. 67-71.Google Scholar
  10. 10.
    Cataldo, D.A. and Wildung, R.C., Soil and Plant Factors Influencing the Accumulation of Heavy Metals by Plants, Environ. Health. Perspect., 1978, vol. 27, pp. 149-159.Google Scholar
  11. 11.
    Griling, C.A. and Peterson, P.J., The Significance of the Cadmium Species in Uptake and Metabolism of Cadmium in Crop Plants, J. Plant Nutr., 1981, vol. 3, pp. 703-720.Google Scholar
  12. 12.
    Dushenkov, V., Kumar, N., Motto, H., and Raskin, I., Rizofiltration: The Use of Plants to Remove Heavy Metals from Aqueous Streams, Environ. Sci. Technol., 1995, vol. 29, pp. 1239-1245.Google Scholar
  13. 13.
    Hagemeyer, J., Kahle, H., Breckle, S.-W., and Waisel, Y., Cadmium in Fagus sylvatica L. Trees and Seedlings: Leaching, Uptake and Interconnection with Transpiration, Water, Air, Soil Pollut., 1986, vol. 29, pp. 347-359.Google Scholar
  14. 14.
    Hinesly, T.D., Alexander, D.E., Redborg, K.E., and Liegler, E.L., Differential Accumulation of Cd and Zn by Corn Hybrids Grown on Soil Amended with Sewage Sludge, Agron. J., 1982, vol. 74, pp. 469-474.Google Scholar
  15. 15.
    Godzik, B., Heavy Metals Content in Plants from Zinc Dumps and Reference Areas, Polish Bot. Stud., 1993, vol. 5, pp. 113-132.Google Scholar
  16. 16.
    Preer, J.R., Abdi, A.N., Sekhon, H.S., and Murchison, G.B., Metals in Urban Gardens—Effect of Lime and Sludge, J. Environ. Sci. Health, 1995, vol. 30, pp. 2041-2056.Google Scholar
  17. 17.
    Hardiman, R.T. and Jacoby, B., Absorption and Translocation of Cd in Bush Beans (Paseolus vulgaris), Physiol. Plant., 1984, vol. 61, pp. 670-674.Google Scholar
  18. 18.
    Jarvis, S.C., Jones, L.H.P., and Hopper, M.J., Cadmium Uptake from Solution by Plants and Its Transport from Roots to Shoots, Plant Soil, 1976, vol. 44, pp. 179-191.Google Scholar
  19. 19.
    Kawasaki, T. and Moritsugu, M., Effect of Calcium on the Absorption and Translocation of Heavy Metals in Excised Barley Roots: Multi-Compartment Transport Box Experiment, Plant Soil, 1987, vol. 100, pp. 21-34.Google Scholar
  20. 20.
    Jensen, G.M., Interactions of Cd and Ca in Roots of Willow and Birch at Different Ca Status, Plant Root—from Cells to Systems. 14th Long-Ashton Int. Symp., Bristol, 1995, p. 70.Google Scholar
  21. 21.
    Gussarsson, M., Adalsteinsson, S., Jensen, P., and Asp, P., Cadmium and Copper Interactions on the Accumulation and Distribution of Cd and Cu in Birch (Betula pendula Roth.) Seedlings, Plant Soil, 1995, vol. 171, pp. 185-187.Google Scholar
  22. 22.
    Choudhary, M., Bailey, L.D., Grant, C.A., and Leisle, D., Effect of Zn on the Concentration of Cd and Zn in Plant Tissue of 2 Durum Wheat Lines, Can. J. Plant Sci., 1995, vol. 75, pp. 445-448.Google Scholar
  23. 23.
    Simon, L., Martin, H.W., and Adriano, D.C., Chicory (Cichorium intybus) and Dandelion (Taraxacum officinale Web.) as Phytoindicators of Cadmium Contamination, Water, Air, Soil Pollut., 1996, vol. 91, pp. 351-362.Google Scholar
  24. 24.
    Guo, Y.L. and Marschner, H., Genotypic Differences in Uptake and Translocation of Cadmium in Bean and Maize Inbred Lines, Z. Pflanzenernaehr. Bodenkd., 1996, vol. 159, pp. 55-60.Google Scholar
  25. 25.
    Kumar, P.B.A.N., Dushenkov, V., Motto, H., and Raskin, I., Phytoextraction: The Use of Plants to Remove Heavy Metals from Soils, Environ. Sci. Technol., 1995, vol. 29, pp. 1232-1238.Google Scholar
  26. 26.
    Coughtrey, P.J. and Martin, M.H., Cadmium Uptake and Distribution in Tolerant and Non-Tolerant Population of Holcus lanatus Grown in Solution Culture, Oicos, 1978, vol. 30, pp. 555-560.Google Scholar
  27. 27.
    Khan, D.H., Duckett, J.G., Frankland, B., and Kirkham, J.B., An X-Ray Microanalytical Study of the Distribution of Cadmium in Roots of Zea mays L., Plant. Physiol., 1984, vol. 115, pp. 19-28.Google Scholar
  28. 28.
    Leblova, S., Mucha, A., and Spirhanzlova, E., Compartmentation of Cadmium, Copper, Lead and Zinc in Seedlings of Maize (Zea mays) Induction of Metallothionein, Biologia (Bratisl.), 1986, vol. 41, pp. 777-785.Google Scholar
  29. 29.
    Kozarenko, A.E., Lead in Plants, Svinets v okruzhayushchei srede (Lead in Environement), Dobrovol'skii, V.V., Ed., Moscow: Nauka, 1987, pp. 71-76.Google Scholar
  30. 30.
    Il'in, V.B., Tyazhelye metally v sisteme pochva-rastenie (Heavy Metals in the Soil-Plant System), Novosibirsk: Nauka, 1991.Google Scholar
  31. 31.
    Zheljazkov, V.D. and Nielsen, N.E., Effect of Heavy Metals on Peppermint and Cornmint, Plant Soil, 1996, vol. 178, pp. 12-20.Google Scholar
  32. 32.
    Salt, D.E., Prince, R.C., Pickering, I.J., and Raskin, I., Mechanisms of Cadmium Mobility and Accumulation in Indian Mustard, Plant Physiol., 1995, vol. 109, pp. 1427-1433.Google Scholar
  33. 33.
    Lane, S.D. and Martin, E.S., An Ultrastructural Examination of Lead Localization in Germinating Seeds of Raphanus sativus, Z. Pflanzenphysiol., 1982, vol. 107, pp. 33-40.Google Scholar
  34. 34.
    Obroucheva, N.V., Bystrova, E.I., Ivanov, V.B., Antipova, O.V., and Seregin, I.V., Root Growth Responses to Lead in Young Maize Seedlings, Plant Soil, 1998, vol. 200, pp. 55-61.Google Scholar
  35. 35.
    Glater, R.A. and Hernandez, L., Lead Detection in Living Plant Tissue Using a New Histochemical Method, J. Air Pollut. Control Associat., 1972, vol. 22, pp. 463-467.Google Scholar
  36. 36.
    Wierzbicka, M., Lead Translocation and Localization in Allium cepa Roots, Can. J. Bot., 1987, vol. 65, pp. 1851-1860.Google Scholar
  37. 37.
    Wierzbicka, M., Lead Accumulation and Its Translocation Barriers in Roots of Allium cepa L. Autoradiographic and Ultrastructural Studies, Plant Cell Environ., 1987, vol. 10, pp. 17-26.Google Scholar
  38. 38.
    Ksiazek, M. and Wozny, A., Lead Movement in Poplar Adventitious Roots, Biol. Plant., 1990, vol. 32, pp. 54-57.Google Scholar
  39. 39.
    Theiss, H.-B., Localization of Lead in Seedlings of Lepidium sativum, Sci. Tech. Inform., 1990, vol. 9, pp. 246-252.Google Scholar
  40. 40.
    Tung, G. and Temple, P.J., Uptake and Localization of Lead in Corn (Zea mays L.) Seedlings, a Study by Histochemical and Electron Microscopy, Sci. Total Environ., 1996, vol. 188, pp. 71-85.Google Scholar
  41. 41.
    Kocjan, G., Samardakiewicz, S., and Wozny, A., Regions of Lead Uptake in Lemna minor Plants and Localization of This Metal within Selected Parts of the Root, Biol. Plant., 1996, vol. 38, pp. 107-117.Google Scholar
  42. 42.
    Gzyl, J., Przymusinski, R., and Wozny, A., Organospecific Reactions of Yellow Lupin Seedlings to Lead, Acta Soc. Bot. Polon., 1997, vol. 66, pp. 61-66.Google Scholar
  43. 43.
    Seregin, I.V. and Ivanov, V.B., Histochemical Investigation of Cadmium and Lead Distribution in Plants, Fiziol. Rast. (Moscow), 1997, vol. 44, pp. 915-921 (Russ. J. Plant Physiol., Engl. Transl.).Google Scholar
  44. 44.
    Vodnik, D., Jentschke, G., Fritz, E., Gogala, N., and Godbold, D.L., Root-Applied Cytokinin Reduces Lead Uptake and Affects Its Distribution in Norway Spruce Seedlings, Physiol. Plant., 1999, vol. 106, pp. 75-81.Google Scholar
  45. 45.
    Lane, S.D. and Martin, E.S., A Histochemical Investigation of Lead Uptake in Raphanus sativus, New Phytol., 1977, vol. 79, pp. 281-286.Google Scholar
  46. 46.
    Schreiber, L., Hartmann, K., Skrabs, M., and Zeier, J., Apoplastic Barriers in Roots: Chemical Composition of Endodermal and Hypodermal Cell Walls, J. Exp. Bot., 1999, vol. 50, pp. 1267-1280.Google Scholar
  47. 47.
    Crowdy, S.H. and Tanton, T.W., Water Pathways in Higher Plants, J. Exp. Bot., 1970, vol. 21, pp. 102-111.Google Scholar
  48. 48.
    Chardonnens, A.N., Bookum, W.M., Kuijper, L.D.J., Verkleij, J.A.C., and Ernst, W.H.O., Distribution of Cadmium in Leaves of Cadmium Tolerant and Sensitive Ecotypes of Silene vulgaris, Physiol. Plant., 1998, vol. 104, pp. 75-80.Google Scholar
  49. 49.
    Seregin, I.V. and Ivanov, V.B., Is the Endodermal Barrier the Only Factor Preventing the Inhibition of Root Branching to Heavy Metal Salts? Fiziol. Rast. (Moscow), 1997, vol. 44, pp. 922-925 (Russ. J. Plant Physiol., Engl. Transl.).Google Scholar
  50. 50.
    Seregin, I.V. and Ivanov, V.B., The Transport of Cadmium and Lead Ions through Root Tissues, Fiziol. Rast. (Moscow), 1998, vol. 45, pp. 899-905 (Russ. J. Plant Physiol., Engl. Transl.).Google Scholar
  51. 51.
    Petit, C.M. and van de Geijn, S.C., In vivo Measurement of Cadmium (115mCd) Transport and Accumulation in the Stems of Intact Tomato Plants (Lycopersicon esculentum Mill.), Planta, 1978, vol. 138, pp. 137-143.Google Scholar
  52. 52.
    Cataldo, D.A., McFadden, K.M., Garland, T.R., and Wildung, R.E., Organic Constituents and Complexation of Nickel(II), Iron(III), Cadmium(II) and Plutonium(IV) in Soybean Xylem Exudates, Plant Physiol., 1988, vol. 86, pp. 734-739.Google Scholar
  53. 53.
    Senden, M.H.M.N., Vandermeer, A.J.G.M., Verburg, T.G., and Wolterbeek, H.T., Citric Acid in Tomato Plant Roots and Its Effect on Cadmium Uptake and Distribution, Plant Soil, 1995, vol. 171, pp. 333-339.Google Scholar
  54. 54.
    Leita, L., Denobili, M., Cesco, S., and Mondini, C., Analysis of Intercellular Cadmium Forms in Roots and Leaves of Bush Bean, J. Plant Nutr., 1996, vol. 19, pp. 527-533.Google Scholar
  55. 55.
    Vassil, A.D., Kapulnik, Y., Raskin, I., and Salt, D.E., The Role of EDTA in Lead Transport and Accumulation by Indian Mustard, Plant Physiol., 1998, vol. 117, pp. 447-453.Google Scholar
  56. 56.
    Glavac, V., Koenies, H., and Ebben, U., Seasonal Variation and Axial Distribution of Cadmium Concentrations in Trunk Xylem Sap of Beech Trees (Fagus sylvatica L.), Angew. Bot., 1990, vol. 64, pp. 357-364.Google Scholar
  57. 57.
    Popelka, J.C., Shubert, S., Schulz, R., and Hansen, A.P., Cadmium Uptake and Translocation during Reproductive Development of Peanut (Arachis hypogaea L.), Angew. Bot., 1996, vol. 70, pp. 140-143.Google Scholar
  58. 58.
    Yang, X., Baligar, V.C., Martens, D.C., and Clark, R.B., Influx, Transport and Accumulation of Cadmium in Plant Species Grown at Different Cd2+ Activities, J. Environ. Sci. Health, 1995, vol. 30, pp. 569-583.Google Scholar
  59. 59.
    Rauser, W.E. and Ackerley, C.A., Localization of Cadmium in Granules within Differentiating and Mature Root Cells, Can. J. Bot., 1987, vol. 65, pp. 643-646.Google Scholar
  60. 60.
    Skaar, H., Ophus, E., and Gullvag, B.M., Lead Accumulation within Nuclei of Moss Leaf Cells, Nature, 1973, vol. 241, pp. 215-216.Google Scholar
  61. 61.
    Ophus, E.M. and Gullvag, B.M., Localization of Lead within Leaf Cell of Rhytidiadelphus squarosus (Hedw.) Warnst. by Means of Transmission Electron Microscopy and X-ray Microanalysis, Cytobios, 1974, vol. 10, pp. 45-48.Google Scholar
  62. 62.
    Wierzbicka, M., Ultrastructural Location of Lead in the Cell Walls of Allium cepa L. Roots, Postepy Biologii Komorki, 1984, vol. II, pp. 509-512.Google Scholar
  63. 63.
    Malone, C., Koeppe, D.E., and Miller, J., Localization of Lead Accumulated by Corn Plants, Plant Physiol., 1974, vol. 53, pp. 388-394.Google Scholar
  64. 64.
    Wierzbicka, M. and Antosiewicz, D., How Lead Can Easily Enter the Food Chain—a Study of Plant Roots, Sci. Total Environ., Suppl., 1993, pp. 423-429.Google Scholar
  65. 65.
    Wozny, A., Zatorska, B., and Mlodzianowski, F., Influence of Lead on the Development of Lupin Seedlings and Ultrastructural Localization of This Metal in the Roots, Acta Soc. Bot. Polon., 1982, vol. 51, pp. 345-351.Google Scholar
  66. 66.
    Rudakova, E.V., Karakis, K.D., and Sidorshina, E.I., The Role of Plant Cell Walls in the Uptake and Accumulation of Metal Ions, Fiziol. Biokhim. Kul't. Rast., 1988, vol. 20, pp. 3-12.Google Scholar
  67. 67.
    Ernst, W.H.O., Verkleij, J.A.C., and Schat, H., Metal Tolerance in Plants, Acta Bot. Neerl., 1992, vol. 43, pp. 229-248.Google Scholar
  68. 68.
    Blinda, A., Koch, B., Ramanjulu, S., and Deitz, K.-J., De novo Synthesis and Accumulation of Apoplastic Proteins in Leaves of Heavy Metal-Exposed Barley Seedlings, Plant Cell Environ., 1997, vol. 20, pp. 969-981.Google Scholar
  69. 69.
    Samardakiewicz, S., Strawinski, P., and Wozny, A., The Influence of Lead on Callose Formation in Roots of Lemna minor L., Biol. Plant., 1996, vol. 38, pp. 463-467.Google Scholar
  70. 70.
    Qureshi, J.A., Hardwick, K., and Collin, H.A., Intracellular Localization of Lead in a Lead Tolerant and Sensitive Clone of Anthoxanthum odoratum, J. Plant. Physiol., 1986, vol. 122, pp. 357-364.Google Scholar
  71. 71.
    Poulter, A., Collin, H.A., Thurman, D.A., and Hardwick, K., The Role of the Cell Wall in the Mechanism of Lead and Zinc Tolerance in Anthoxanthum odoratum L., Plant Sci., 1985, vol. 42, pp. 61-66.Google Scholar
  72. 72.
    Nishizono, H., Ichikawa, H., Suziki, S., and Ishii, F., The Role of the Root Cell Wall in the Heavy Metal Tolerance of Athyrium yokoscense, Plant Soil, 1987, vol. 101, pp. 15-20.Google Scholar
  73. 73.
    Krotz, R.M., Evangelou, B.P., and Wagner, G.J., Relationships between Cadmium, Zinc, Cd-Peptide and Organic Acids in Tobacco Suspension Cells, Plant Physiol., 1989, vol. 91, pp. 780-787.Google Scholar
  74. 74.
    Mazen, A.M.A. and El Maghraby, O.M.O., Accumulation of Cadmium and Strontium, and a Role of Calcium Oxalate in Water Hyacinth Tolerance, Biol. Plant., 1997/98, vol. 40, pp. 411-417.Google Scholar
  75. 75.
    Gamalei, Yu.V., The Origin and Location of Plant Organelles, Fiziol. Rast. (Moscow), 1997, vol. 44, pp. 115-137 (Russ. J. Plant Physiol., Engl. Transl.).Google Scholar
  76. 76.
    Vogeli-Lange, R. and Wagner, G.J., Subcellular Localization of Cadmium and Cadmium-Binding Peptides in Tobacco Leaves, Plant Physiol., 1990, vol. 92, pp. 1086-1093.Google Scholar
  77. 77.
    Vogeli-Lange, R. and Wagner, G.J., Relationship between Cadmium, Glutathione and Cadmium-Binding Peptides (Phytochelatins) in Leaves of Intact Tobacco Seedlings, Plant Sci., 1996, vol. 114, pp. 11-18.Google Scholar
  78. 78.
    Salt, D.E. and Rauser, W.E., Mg-ATP-Dependent Transport of Phytochelatins across the Tonoplast of Oat Roots, Plant Physiol., 1995, vol. 107, pp. 1293-1301.Google Scholar
  79. 79.
    De Knecht, J.A., van Dillen, M., Koevoets, P.L.M., Schat, H., Verkleij, J.A.C., and Ernst, W.H.O., Phytochelatins in Cadmium Sensitive and Cadmium-Tolerant Silene vulgaris, Plant Physiol., 1994, vol. 104, pp. 255-261.Google Scholar
  80. 80.
    Bazzaz, F.A., Rolfe, G.L., and Windle, P., Effect of Cd on Photosynthesis and Transpiration of Excised Leaves of Corn and Sunflower, J. Environ. Qual., 1974, vol. 3, pp. 156-157.Google Scholar
  81. 81.
    Prassad, D.D.K. and Prassad, A.R.K., Altered δ-Aminolaevulinic Acid Metabolism by Lead and Mercury in Germinating Seedlings of Bajra (Pennisetum typhoideum), J. Plant Physiol., 1987, vol. 127, pp. 241-249.Google Scholar
  82. 82.
    Stobart, A.K., Griffiths, W.T., Ameen-Bukhari, I., and Sherwood, R.P., The Effect of Cd2+ on Biosynthesis of Chlorophyll in Leaves of Barley, Physiol. Plant., 1985, vol. 63, pp. 293-298.Google Scholar
  83. 83.
    Baszinsky, T., Wajda, L., Krol, M., Wolinska, D., Krupa, Z., and Tukendorf, A., Photosynthetic Activities of Cadmium-Treated Tomato Plants, Physiol. Plant., 1980, vol. 48, pp. 365-370.Google Scholar
  84. 84.
    Stiborova, M., Doubravova, M., Brezinova, A., and Friedrich, A., Effect of Heavy Metal Ions on Growth and Biochemical Characteristics of Photosynthesis of Barley (Hordeum vulgare L.), Photosynthetica, 1986, vol. 20, pp. 418-425.Google Scholar
  85. 85.
    Stiborova, M., Cd2+ Ions Affect the Quaternary Structure of Ribulose-1,5-bisPhosphate Carboxylase from Barley Leaves, Biochem. Physiol. Pflanz., 1988, vol. 183, pp. 371-378.Google Scholar
  86. 86.
    Sheoran, I.S., Singal, H.R., and Singh, R., Effect of Cadmium and Nickel on Photosynthesis and the Enzymes of the Photosynthetic Carbon Reduction Cycle in Pigeonpea (Cajanus cajan L.), Photosynth. Res., 1990, vol. 23, pp. 345-351.Google Scholar
  87. 87.
    Iglesias, A.A. and Andreo, C.S., Inhibition of Zea mays Phosphoenolpyruvate Carboxylase by Copper and Cadmium Ions, Photosynthetica, 1984, vol. 18, pp. 134-138.Google Scholar
  88. 88.
    Vojtechova, M. and Leblova, S., Uptake of Lead and Cadmium by Maize Seedlings and the Effect of Heavy Metals on the Activity of Phosphoenolpyruvate Carboxylase Isolated from Maize, Biol. Plant., 1991, vol. 33, pp. 386-394.Google Scholar
  89. 89.
    Weigel, H.J., The Effect of Cd2+ on Photosynthetic Reactions of Mesophyll Protoplasts, Physiol. Plant., 1985, vol. 63, pp. 192-200.Google Scholar
  90. 90.
    Huang, C.-Y., Bazzaz, F.A., and Vanderhoef, L.N., The Inhibition of Soybean Metabolism by Cadmium and Lead, Plant. Physiol., 1974, vol. 54, pp. 122-124.Google Scholar
  91. 91.
    Sela, M., Garty, J., and Tel-Or, E., The Accumulation and the Effect of Heavy Metals on the Water Fern Azolla filiculoides, New Phytol., 1989, vol. 112, pp. 7-12.Google Scholar
  92. 92.
    Burzynski, M. and Grabowski, A., Influence of Lead on NO3 Uptake and Reduction in Cucumber Seedlings, Acta Soc. Bot. Polon., 1984, vol. 53, pp. 77-86.Google Scholar
  93. 93.
    Hernandez, L.E., Carpenaruiz, R., and Garate, A., Alterations in the Mineral Nutrition of Pea Seedlings Exposed to Cadmium, J. Plant Nutr., 1996, vol. 19, pp. 1581-1598.Google Scholar
  94. 94.
    Hernandez, L.E., Garate, A., and Carpenaruiz, R., Effects of Cadmium on the Uptake, Distribution and Assimilation of Nitrate in Pisum sativum, Plant Soil, 1997, vol. 189, pp. 97-106.Google Scholar
  95. 95.
    Ouariti, O., Gouia, H., and Ghorbal, M.H., Responses of Bean and Tomato Plants to Cadmium-Growth, Mineral Nutrition, and Nitrate Reduction, Plant Physiol. Biochem., 1997, vol. 35, pp. 347-354.Google Scholar
  96. 96.
    Tu Shu-I and Brouillette, J.N., Metal Ion Inhibition of Corn Root Plasma Membrane ATPase, Phytochemistry, 1987, vol. 26, pp. 65-69.Google Scholar
  97. 97.
    Fodor, E., Szabonagy, A., and Erdei, L., The Effect of Cadmium on the Fluidity and H+-ATPase Activity of Plasma Membrane from Sunflower and Wheat Roots, J. Plant Physiol., 1995, vol. 147, pp. 87-92.Google Scholar
  98. 98.
    Chugh, L.K. and Sawhney, S.K., Effect of Cadmium on Activities of Some Enzymes of Glycolysis and Pentose Phosphate Pathway in Pea, Biol. Plant., 1999, vol. 42, pp. 401-407.Google Scholar
  99. 99.
    Van Assche, F. and Clijsters, H., Effects of Metals on Enzyme Activity in Plants, Plant Cell Environ., 1990, vol. 13, pp. 195-206.Google Scholar
  100. 100.
    Igoshina, T.I. and Kositsin, A.V., The Tolerance to Lead of Carbonic Anhydrase from Melica nutans (Poaceae), Bot. Zh. (Leningrad), 1990, vol. 75, pp. 1144-1150.Google Scholar
  101. 101.
    Cardinaels, C., Put, C., Van Assche, F., and Clijsters, H., The Superoxidedismutase as a Biochemical Indicator Discriminating between Zinc and Cadmium Toxicity, Arch. Int. Physiol. Biochem., 1984, vol. 92, pp. 27-28.Google Scholar
  102. 102.
    Przymusinski, R., Rucinska, R., and Gwozdz, E.A., The Stress Stimulated 16 kDa Polypeptide from Lupin Roots Has Properties of Cytosolic Cu: Zn-Superoxidedismutase, Environ. Exp. Bot., 1995, vol. 35, pp. 485-495.Google Scholar
  103. 103.
    Srivastava, A. and Jaiswal, V.S., Biochemical Changes in Duck Weed after Cadmium Treatment, Water, Air, Soil Pollut., 1990, vol. 50, pp. 163-170.Google Scholar
  104. 104.
    Chen, S.L. and Kao, C.H., Cd Induced Changes in Proline Level and Peroxidase Activity in Roots of Rice Seedlings, Plant Growth Regul., 1995, vol. 17, pp. 67-71.Google Scholar
  105. 105.
    Blinda, A., Abou-Mandour, A., Azarkovich, M., Brune, A., and Dietz, K.-J., Heavy Metal-Induced Changes in Peroxidase Activity in Leaves, Roots and Cell Suspension Cultures of Hordeum vulgare L., Plant Peroxidases: Biochemistry and Physiology, Obinger, C. et al., Eds., Geneva: Univ. Geneva, 1996, pp. 374-379.Google Scholar
  106. 106.
    Hoxha, Y., Jablanovic, M., Abdullai, K., and Filipovic, R., Catalase Activity in Plants Exposed to Contamination with Heavy Metal, Acta Biol. Med. Exp., 1985, vol. 10, pp. 21-24.Google Scholar
  107. 107.
    Kositsin, A.V., Interaction between Metals and Enzymes, Ustoichivost' k tyazhelym metallam dikorastushchikh vidov (Tolerance of Plant Species Grown in the Wild to Heavy Metals), Alekseeva-Popova, N.V., Ed., Leningrad: Lenuprizdat, 1991, pp. 15-22.Google Scholar
  108. 108.
    Shekhovtsova, T.N., Kucheyarova, V.V., and Dolmanova, I.F., The Enzymatic Method of Lead Determination Using Alkaline Phosphatase, Zh. Anal. Khim., 1985, vol. XL, pp. 1810-1814.Google Scholar
  109. 109.
    Levina, E.N., Obshchaya toksikologiya metallov (General Toxicology of Metals), Leningrad: Meditsyna, 1972.Google Scholar
  110. 110.
    Stroinski, A., Some Physiological and Biochemical Aspects of Plant Resistance to Cadmium Effect. I. Antioxidative System, Acta Physiol. Plant., 1999, vol. 21, pp. 175-188.Google Scholar
  111. 111.
    Shaw, B.P., Effects of Mercury and Cadmium on the Activities of Antioxidative Enzymes in the Seedlings of Phaseolus aureus, Biol. Plant., 1995, vol. 37, pp. 587-596.Google Scholar
  112. 112.
    Obata, H., Inoue, N., and Umebayashi, M., Effect of Cd on Plasma Membrane ATPase from Plant Roots Differing in Tolerance to Cd, Soil Sci. Plant Nutr., 1996, vol. 42, pp. 361-366.Google Scholar
  113. 113.
    Shekhovtsova, T.N., Muginova, S.V., Mizgunova, U.M., and Dolmanova, I.F., Application of Oxidases in Analysis, Quimica Analitica, 1996, vol. 15, pp. 312-320.Google Scholar
  114. 114.
    Chaney, R.L., White, M.C., and Van Tierhoven, M., Interaction of Cd and Zn in Phytotoxicity to and Uptake by Soybean, Agron. Abstr., 1976, vol. 68, p. 21.Google Scholar
  115. 115.
    Lepp, N.W., Interactions between Cadmium and Other Heavy Metals in Affecting the Growth of Lettuce (Lactuca sativa L.) Seedlings, Z. Pflanzenphysiol., 1977, vol. 84, pp. 363-367.Google Scholar
  116. 116.
    Burzynski, M., The Influence of Lead and Cadmium on the Absorption and Distribution of Potassium, Calcium, Magnesium and Iron in Cucumber Seedlings, Acta Physiol. Plant., 1987, vol. 9, pp. 229-238.Google Scholar
  117. 117.
    Breckle, S.W., Growth under Stress: Heavy Metals, Plant Roots: The Hidden Half, Waisel, Y. and Kafkafi, U., Eds., New York: Marcel Dekker, 1991, pp. 351-373.Google Scholar
  118. 118.
    Yang, X., Baligar, V.C., Martens, D.C., and Clark, R.B., Cadmium Effects on Influx and Transport of Mineral Nutrients in Plant Species, J. Plant Nutr., 1996, vol. 19, pp. 643-656.Google Scholar
  119. 119.
    Obata, H. and Umebayashi, M., Effects of Cadmium on Mineral Nutrient Concentrations in Plants Differing in Tolerance for Cadmium, J. Plant Nutr., 1997, vol. 20, pp. 97-105.Google Scholar
  120. 120.
    Keck, R.W., Cadmium Alteration of Root Physiology and Potassium Ion Fluxes, Plant Physiol., 1978, vol. 62, pp. 94-96.Google Scholar
  121. 121.
    Alcantara, E., Romera, F.J., and Canete, M., Effects of Heavy Metals on Both Induction and Function of Root Fe(III) Reductase in Fe Deficient Cucumber (Cucumis sativus) Plants, J. Exp. Bot., 1994, vol. 45, pp. 1893-1898.Google Scholar
  122. 122.
    Meharg, A.A., The Role of Plasmalemma in Metal Tolerance in Angiosperms, Physiol. Plant., 1993, vol. 88, pp. 191-198.Google Scholar
  123. 123.
    Ouariti, O., Boussama, N., Zarrouk, M., Cherif, A., and Ghorbal, M.H., Cadmium-and Copper-Induced Changes in Tomato Membrane Lipids, Phytochemistry, 1997, vol. 45, pp. 1343-1350.Google Scholar
  124. 124.
    Ahrend, R., Kahle, H., and Breckle, S.-W., Effect of Cadmium on Transpiration of Young Beech Trees (Fagus sylvatica L.), Air Pollution and Forest Decline, Bucher, J.B. et al., Eds., Birmensdorf, 1989, pp. 381-383.Google Scholar
  125. 125.
    Barcelo, J. and Poschenrieder, C., Plant Water Relations as Affected by Heavy Metal Stress: A Review, J. Plant Nutr., 1990, vol. 13, pp. 1-37.Google Scholar
  126. 126.
    Wozny, A., Schneider, J., and Gwozdz, E.A., The Effects of Lead and Kinetin on Greening Barley Leaves, Biol. Plant., 1995, vol. 37, pp. 541-552.Google Scholar
  127. 127.
    Vassilev, A., Yordanov, I., and Tsonev, T., Effects of Cd2+ on the Physiological State and Photosynthetic Activity of Young Barley Plants, Photosynthetica, 1997, vol. 34, pp. 293-302.Google Scholar
  128. 128.
    Barcelo, J., Vazques, M.D., and Poschenrieder, Ch., Structural and Ultrastructural Disorders in Cadmium-Treated Bush Bean Plants (Phaseolus vulgaris L.), New Phytol., 1988, vol. 108, pp. 37-49.Google Scholar
  129. 129.
    Lane, S.D., Martin, E.S., and Garrod, J.P., Lead Toxicity Effect on Indole-3-Acetic Acid-Induced Cell Elongation, Planta, 1978, vol. 144, pp. 79-84.Google Scholar
  130. 130.
    Burzynski, M. and Jacob, M., Influence of Lead on Auxin-Induced Cell Elongation, Acta Soc. Bot. Polon., 1983, vol. 52, pp. 231-239.Google Scholar
  131. 131.
    Barcelo, J., Poschenrieder, Ch., Andreu, I., and Gunse, B., Cadmium Induced Decrease of Water Stress Resistance in Bush Bean Plants (Paseolus vulgaris cv. Contender), J. Plant. Physiol., 1986, vol. 125, pp. 17-25.Google Scholar
  132. 132.
    Costa, G., Michaut, J.-C., and Morel, J.-L., Influence of Cadmium on Water Relations and Gas Exchanges in Phosphorus Deficient Lupinus albus, Plant Physiol. Biochem., 1994, vol. 32, pp. 105-114.Google Scholar
  133. 133.
    Leita, L., Marchiol, L., Martin, M., and Petessotti, A., Transpiration Dynamics in Cadmium Treated Soybean (Glycine max L.) Plants, J. Agr. Crop. Sci. Z. Acker. Pflanzen, 1995, vol. 175, pp. 153-156.Google Scholar
  134. 134.
    Hollenbach, B., Schreiber, L., Hartung, W., and Dietz, K.-J., Cadmium Leads to Stimulated Expression of the Lipid Transfer Protein Genes in Barley: Implications for the Involvement of Lipid Transfer Proteins in Wax Assembly, Planta, 1997, vol. 203, pp. 9-19.Google Scholar
  135. 135.
    Schat, H., Sharma, S.S., and Vooijs, R., Heavy Metal-Induced Accumulation of Free Proline in a Metal-Tolerant and a Non-Tolerant Ecotype of Silene vulgaris, Physiol. Plant., 1997, vol. 107, pp. 477-482.Google Scholar
  136. 136.
    Kuznetsov, V.V. and Shevyakova, N.I., Proline under Stress: Biological Role, Metabolism, and Regulation, Fiziol. Rast. (Moscow), 1999, vol. 46, pp. 321-336 (Russ. J. Plant Physiol., Engl. Transl.).Google Scholar
  137. 137.
    Reese, R.N. and Roberts, L.M., Effect of Cadmium on Whole Cell and Mitochondrial Respiration in Tobacco Cell Suspension Cultures (Nicotiana tabacum L. var. Xanthi), J. Plant. Physiol., 1985, vol. 120, pp. 123-130.Google Scholar
  138. 138.
    Miller, R.J., Bittell, J.E., and Koeppe, D.E., The Effect of Cadmium on Electron and Energy Transfer Reactions in Corn Mitochondria, Physiol. Plant., 1973, vol. 28, pp. 166-171.Google Scholar
  139. 139.
    Alia Saradhi, P.P., Suppression in Mitochondrial Electron Transport Is the Prime Cause behind Stress Induced Proline Accumulation, Biochem. Biophys. Res. Commun., 1993, vol. 193, pp. 54-58.Google Scholar
  140. 140.
    Kesseler, A. and Brand, M.D., Quantitative Determination of the Regulation of Oxidative Phosphorylation by Cadmium in Potato Tuber Mitochondria, Eur. J. Biochem., 1994, vol. 225, pp. 923-935.Google Scholar
  141. 141.
    Mathys, W., Enzymes of Heavy-Metal-Resistant and Non-Resistant Populations of Silene cucubalus and Their Interaction with Some Heavy Metals in vitro and in vivo, Physiol. Plant., 1975, vol. 33, pp. 161-165.Google Scholar
  142. 142.
    Malik, D., Sheoran, I.S., and Singh, R., Lipid Composition of Thylakoid Membranes of Cadmium Treated Wheat Seedlings, Indian J. Biochem. Biophys., 1992, vol. 29, pp. 350-354.Google Scholar
  143. 143.
    Stefanov, K.L., Pandev, S.D., Seizova, K.A., Tyankova, L.A., and Popov, S.S., Effect of Lead on the Lipid Metabolism in Spinach Leaves and Thylakoid Membranes, Biol. Plant., 1995, vol. 37, pp. 251-256.Google Scholar
  144. 144.
    Kacabova, P. and Nart, L., Effect of Lead on Growth Characteristics and Chlorophyll Content in Barley Seedlings, Photosynthetica, 1986, vol. 20, pp. 411-417.Google Scholar
  145. 145.
    Krupa, Z. and Baszynski, T., Some Aspects of Heavy Metals Toxicity towards Photosynthetic Apparatus-Direct and Indirect Effects on Light and Dark Reactions, Acta Physiol. Plant., 1995, vol. 17, pp. 177-190.Google Scholar
  146. 146.
    Wilkins, D.A., The Measurement of Tolerance to Edaphic Factors by Means of Root Growth, New Phytol., 1978, vol. 86, pp. 623-633.Google Scholar
  147. 147.
    Wang, W., Root Elongation Method for Toxicity Testing of Organic and Inorganic Pollutants, Environ. Toxicol. Chem., 1987, vol. 6, pp. 409-414.Google Scholar
  148. 148.
    Hagemeyer, J. and Breckle, S.W., Growth under Trace Element Stress, Plant Roots: The Hidden Half, Waisel, Y. and Kafkafi, U., Eds., New York: Marcel Dekker, 1996, pp. 415-433.Google Scholar
  149. 149.
    Titov, A.F., Talanova, V.V., Boeva, N.P., Minaeva, S.V., and Soldatov, S.E., The Effect of Lead Ions on the Growth of Wheat, Barley, and Cucumber Seedlings, Fiziol. Rast. (Moscow), 1995, vol. 42, pp. 457-462 (Russ. J. Plant Physiol., Engl. Transl.).Google Scholar
  150. 150.
    Titov, A.F., Talanova, V.V., and Boeva, N.P., Growth Responses of Barley and Wheat Seedlings to Lead and Cadmium, Biol. Plant., 1996, vol. 38, pp. 431-436.Google Scholar
  151. 151.
    Wierzbicka, M. and Obidzinska, J., The Effect of Lead on Seed Imbibitions and Germination in Different Plant Species, Plant Sci., 1998, vol. 137, no. 2, pp. 155-171.Google Scholar
  152. 152.
    Mel'nichuk, Yu.P., Vliyanie ionov kadmiya na kletochnoe delenie i rost rastenii (The Effect of Cadmium Ions on the Cell Division and Plant Growth), Kiev: Naukova Dumka, 1990.Google Scholar
  153. 153.
    Nesterova, A.N., The Effect of Lead, Cadmium, and Zinc Ions on the Cell Arrangement in the Meristem and the Growth of Maize Seedlings, Cand. Sci. (Biol.) Dissertation, Moscow: Moscow Gos. Univ., 1989.Google Scholar
  154. 154.
    Neiboer, E. and Richardson, D.H.S., The Replacement of the Non-Descriptive Term “Heavy Metals” by a Biologically and Chemically Significant Classification of Metal Ions, Environ. Pollut., 1980, vol. 1, pp. 3-26.Google Scholar
  155. 155.
    Karataglis, S., Estimation of the Toxicity of Different Metals, Using as Criterion the Degree of Root Elongation in Triticum aestivum Seedlings, Phyton, 1987, vol. 26, pp. 209-217.Google Scholar
  156. 156.
    Arambasic, M.B., Bjelic, S., and Subakov, G., Acute Toxicity of Heavy Metals (Copper, Lead, Zinc), Phenol and Sodium on Allium cepa L., Lepidium sativum L. and Daphnia magna: Comparative Investigations and the Practical Applications, Water Res., 1995, vol. 29, pp. 497-503.Google Scholar
  157. 157.
    Wong, J.S., Lam, H.M., Dhillion, E., Tam, N.F.Y., and Leung, W.H., Physiological Effect and Uptake of Cadmium in Pisum sativum, Environ. Int., 1988, vol. 14, pp. 535-543.Google Scholar
  158. 158.
    Arduini, I., Godbold, D.L., and Onnis, A., Cadmium and Copper Change Root Growth and Morphology of Pinus pinea and Pinus pinaster Seedlings, Physiol. Plant., 1994, vol. 92, pp. 675-680.Google Scholar
  159. 159.
    Ivanov, V.B., Root Growth Responses to Chemicals, Sov. Sci. Rev., Ser. D, 1994, pp. 1-70.Google Scholar
  160. 160.
    Hammett, F.S., Studies in the Biology of Metals: The Influence of Lead on Mitosis and Cell Size in the Growing Root, Protoplasma, 1929, vol. 5, pp. 535-542.Google Scholar
  161. 161.
    Clain, E. and Daysson, G., Cytotoxicite du cadmium: etude sur les meristemes radiculaires d'Allium sativum L., C. R. Soc. Biol., 1977, vol. 171, pp. 1151-1155.Google Scholar
  162. 162.
    Wierzbicka, M., Resumption of Mitotic Activity in Allium cepa Root Tips during Treatment with Lead Salts, Environ. Exp. Bot., 1994, vol. 34, pp. 173-180.Google Scholar
  163. 163.
    Ivanov, V.B., Bystrova, E.I., Obroucheva, N.V., Antipova, O.V., Sobotik, M., and Bergmann, H., Growth Response of Barley Roots as an Indicator of Lead-Toxic Effects, Angew. Bot., 1998, vol. 72, pp. 140-143.Google Scholar
  164. 164.
    Borboa, L. and Delatorre, C., The Genotoxicity of Zn(II) and Cd(II) in Allium cepa Root Meristematic Cells, New Phytol., 1996, vol. 134, pp. 481-486.Google Scholar
  165. 165.
    Wozny, A. and Jerczynska, E., The Effect of Lead on Early Stages of Phaseolus vulgaris L. Growth in in vitro Conditions, Biol. Plant., 1991, vol. 33, pp. 32-39.Google Scholar
  166. 166.
    Lui, D., Jiang, W., Wang, W., and Zhai, L., Evaluation of Metal Ion Toxicity on Root Tip Cells by the Allium Test, Israel J. Plant Sci., 1995, vol. 43, pp. 125-133.Google Scholar
  167. 167.
    Wierzbicka, M., Disturbances in Cytokinesis Caused by Inorganic Lead, Environ. Exp. Bot., 1989, vol. 29, pp. 123-133.Google Scholar
  168. 168.
    Alex, S. and Dupuis, P., FT-IR and Raman Investigation of Cadmium by DNA, Inorg. Chem. Acta., 1989, vol. 157, pp. 271-282.Google Scholar
  169. 169.
    Margoshes, M. and Vallee, B.L., A Cadmium Protein from Equine Renal Cortex, J. Am. Chem. Soc., 1957, vol. 79, pp. 4813-4814.Google Scholar
  170. 170.
    Stone, H. and Overnell, J., Non-Metallothionein Cadmium Binding Proteins, Comp. Biochem. Physiol., 1985, vol. 80, pp. 9-14.Google Scholar
  171. 171.
    Burdin, K.S. and Polyakova, E.E., Metallothioneins, Their Structures, and Functions, Usp. Sovrem. Biol., 1987, vol. 103, pp. 390-400.Google Scholar
  172. 172.
    Rauser, W.E., Phytochelatins, Annu. Rev. Biochem., 1990, vol. 59, pp. 61-86.Google Scholar
  173. 173.
    Kondo, N., Imai, K., Isobe, M., Goto, T., Murasugi, A., Wada-Nakagawa, C., and Hayashi, Y., Cadystin A and B, Major Subunit Peptides Comprising Cadmium Binding Peptides Induced in Fission Yeast—Separation, Revision of Structures and Synthesis, Tetrahedron Lett., 1984, vol. 25, pp. 3869-3872.Google Scholar
  174. 174.
    Grill, E., Winnacker, E.-L., and Zenk, M.H., Phytochelatins: The Principal Heavy-Metal Complexing Peptides of Higher Plants, Science, 1985, vol. 230, pp. 674-676.Google Scholar
  175. 175.
    Grill, E., Winnacker, E.-L., and Zenk, M.H., Phytochelatins, a Class of Heavy-Metal-Binding Peptides from Plants Are Functionally Analogous to Metallothioneins, Proc. Natl. Acad. Sci. USA, 1987, vol. 84, pp. 439-443.Google Scholar
  176. 176.
    Grill, E., Loffler, S., Winnacker, E.-L., and Zenk, M.N., Phytochelatins, the Heavy-Metal-Binding Peptides of Plants, Are Synthesized from Glutathione by a Specific γ-Glutamylcysteine Dipeptidyl Transpeptidase (Phytochelatin Synthase), Proc. Natl. Acad. Sci. USA, 1989, vol. 86, pp. 6838-6842.Google Scholar
  177. 177.
    Rauser, W.E., Phytochelatins and Related Peptides: Structure, Biosynthesis and Function, Plant Physiol., 1995, vol. 109, pp. 1141-1149.Google Scholar
  178. 178.
    Grill, E., Gekeler, W.K., Winnacker, E.-L., and Zenk, M.H., Homo-Phytochelatins Are Heavy Metal Binding Peptides of Homo-Glutathione Containing Fabales, FEBS Lett., 1986, vol. 205, pp. 47-50.Google Scholar
  179. 179.
    Klapheck, S., Fliegner, W., and Zimmer, I., Hydroxymethyl-Phytochelatins [(γ-Glutamylcysteine)n-Serine] Are Metal-Induced Peptides of the Poaceae, Plant Physiol., 1994, vol. 104, pp. 1325-1332.Google Scholar
  180. 180.
    Grunhage, L., Weigel, H.-J., Ilge, D., and Jager, H.J., Isolation and Partial Characterization of a Cadmium-Binding Protein from Pisum sativum, J. Plant. Physiol., 1990, vol. 129, pp. 327-334.Google Scholar
  181. 181.
    Reese, R.N. and Wagner, G.J., Properties of Tobacco (Nicotiana tabacum) Cadmium-Binding Peptide(s), Biochem. J., 1987, vol. 241, pp. 641-647.Google Scholar
  182. 182.
    Robinson, N.J., Tommey, A.M., Kuske, C., and Jackson, P.J., Plant Metallothioneins, Biochem. J., 1993, vol. 295, pp. 1-10.Google Scholar
  183. 183.
    Tukendorf, A. and Rauser, W.E., Changes in Glutathione and Phytochelatins in Roots of Maize Seedlings Exposed to Cadmium, Plant Sci., 1990, vol. 70, pp. 155-166.Google Scholar
  184. 184.
    Klapheck, S., Schlunz, S., and Bergmann, L., Synthesis of Phytochelatins and Homo-Phytochelatins in Pisum sativum L., Plant Physiol., 1995, vol. 107, pp. 515-521.Google Scholar
  185. 185.
    Rai, U.N., Tripathi, R.D., Gupta, M., and Chandra, P., Induction of Phytochelatins under Cadmium Stress in Water Lettuce (Pistia stratiotes L.), J. Environ. Sci. Health, 1995, vol. 30, pp. 2007-2026.Google Scholar
  186. 186.
    Gupta, M., Rai, U.N., Tripathi, R.D., and Chandra, P., Lead-Induced Changes in Glutathione and Phytochelatin in Hydrilla verticillata Royle, Chemosphere, 1995, vol. 30, pp. 2011-2020.Google Scholar
  187. 187.
    Ruegsegger, A., Schmutz, D., and Brunold, C., Regulation of Glutathione Synthesis by Cadmium in Pisum sativum L., Plant Physiol., 1990, vol. 93, pp. 1579-1584.Google Scholar
  188. 188.
    Coi, H.R., Hwang, I.D., Lee, S.H., and Kwon, Y.M., Phytochelatins in Cadmium Treated Seedlings of Canavalia lineata, Mol. Cells, 1996, vol. 6, pp. 451-455.Google Scholar
  189. 189.
    Uotila, M., Aioub, A.A.A., Gullner, G., Komives, T., and Brunold, C., Induction of Glutathione Transferase Activity in Wheat and Pea Seedlings by Cadmium, Acta Biol. Hung., 1994, vol. 45, pp. 11-16.Google Scholar
  190. 190.
    Xiang, C. and Oliver, D.J., Glutathione Metabolic Genes Coordinately Respond to Heavy Metals and Jasmonic Acid in Arabidopsis, Plant Cell, 1998, vol. 10, pp. 1539-1550.Google Scholar
  191. 191.
    Vernoux, T., Wilson, R.C., Seeley, K.A., Reichheld, J.-P., Muroy, S., Brown, S., Maughan, S.C., Corbbett, C.S., van Montagu, M., Inze, D., May, M.J., and Sung, Z.R., The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 Gene Defines a Glutathione-Dependent Pathway Involved in Initiation and Maintenance of Cell Division during Postembryonic Root Development, Plant Cell, 2000, vol. 12, pp. 97-109.Google Scholar
  192. 192.
    Kneer, R. and Zenk, M.N., Phytochelatins Protect Plant Enzymes from Heavy Metal Poisoning, Phytochemistry, 1992, vol. 31, pp. 2663-2667.Google Scholar
  193. 193.
    Tomsett, A.B. and Thurman, D.A., Molecular Biology of Metal Tolerances of Plants, Plant Cell Environ., 1988, vol. 11, pp. 383-394.Google Scholar
  194. 194.
    Robinson, N.J., Wilson, J.R., Turner, J.S., Fordham-Skelton, A.P., and Groom, Q.J., Metal-Gene Interactions in Roots: Metallothionein-Like Genes and Iron Reductases, Plant Root-from Cells to Systems, Anderson, H.M. et al., Eds., Dordrecht: Kluwer, 1997, pp. 117-130.Google Scholar
  195. 195.
    Fuhrer, J., Ethylene Biosynthesis and Cadmium Toxicity in Leaf Tissue of Beans (Phaseolus vulgaris L.), Plant Physiol., 1982, vol. 70, pp. 162-167.Google Scholar
  196. 196.
    Fenik, S.I., Trofimyak, T.B., and Blyum, Ya.B., Development of Plant Tolerance to Heavy Metals, Usp. Sovrem. Biol., 1995, vol. 115, pp. 261-275.Google Scholar
  197. 197.
    Neumann, D., Lichtenberger, O., Gunther, D., Tschiersch, K., and Nover, L., Heat-Shock Proteins Induce Heavy-Metal Tolerance in Higher Plants, Planta, 1994, vol. 194, pp. 360-367.Google Scholar
  198. 198.
    Weinstein, L.H., Kaur-Sawhney, R., Rajam, M.V., Wettlaufer, S.H., and Galston, A.W., Cadmium-Induced Accumulation of Putrescine in Oat and Bean Leaves, Plant Physiol., 1986, vol. 82, pp. 641-645.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • I. V. Seregin
    • 1
  • V. B. Ivanov
    • 1
  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations