Structural Chemistry

, Volume 12, Issue 2, pp 137–148 | Cite as

Infrared Spectra of Krypton Solutions of Methylamine



Variable temperature (−105 to −145°C) studies of the infrared spectra (3500–400 cm−1) of methylamine, CH3NH2, dissolved in liquid krypton have been recorded. From these data, the hydrogen bonding enthalpy has been determined to be 530 ± 29 cm−1 (6.34 ± 0.35 kJ/mol). The elusive ν13 and ν14 fundamentals, which are strongly mixed CH3 rock and NH2 twist, have been observed at 1244 and 876 cm−1, respectively. These assignments are supported by frequency predictions from ab initio MP2/6-31G(d) calculations where the predicted infrared intensities for these two vibrations are 0.054 and 0.002 km/mol. The ab initio predicted infrared spectrum compares very favorably with that observed in the krypton solution. Normal coordinate calculations have also been carried out for four other isotopomers of methylamine, CH3NHD, CH3ND2, CD3NH2, and CD3ND2 and vibrational assignments given from previously reported infrared spectra of matrix isolated samples. The Raman spectrum of these latter three isotopes, along with the normal species, have been predicted from MP2/6-31G(d) calculations and the results compared to the experimental spectra. The equilibrium structural parameters have been obtained from ab initio calculations utilizing several different basis sets with full electron correlation by the perturbation method to second order. These predicted values are compared to the previously reported experimental structural parameters.

FT-IR spectra rare gas solutions ab initio calculations structural parameters methylamine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gray, A. P.; Lord, R. C. J. Chem. Phys. 1957, 26, 690.Google Scholar
  2. 2.
    Durig, J. R.; Bush, S. F.; Baglin, F. G. J. Chem. Phys. 1968, 49, 2106.Google Scholar
  3. 3.
    Delleprane, G.; Zerbi, G. J. Chem. Phys. 1968, 48, 3573.Google Scholar
  4. 4.
    Tamagaka, K.; Tsuboi, M.; Hirakawa, A. Y. J. Chem. Phys. 1968, 48, 5536.Google Scholar
  5. 5.
    Wolff, H.; Ludwig, H. J. Chem. Phys. 1972, 56, 5278.Google Scholar
  6. 6.
    Purnell, C. J.; Barnes, A. J.; Suzuki, S.; Ball, D. F.; Orville-Thomas, W. J. Chem. Phys. 1976, 12, 77.Google Scholar
  7. 7.
    Lambert, J. D.; Roberts, G. A. H.; Rowlinson, J. S.; Wilkinson, V. J. Proc. Roy. Soc. (London) 1949, 195A, 113.Google Scholar
  8. 8.
    Lambert, J. D.; Strong, E. D. T. Proc. Roy. Soc. (London) 1950, 200A, 566.Google Scholar
  9. 9.
    Pimentel, G. C.; McCellan, A. L. The Hydrogen Bond; Freeman, San Francisco, CA, 1960.Google Scholar
  10. 10.
    Iijima, T. Bull. Chem. Soc. Jpn. 1986, 59, 853.Google Scholar
  11. 11.
    Sztraka, J. L. Acta Phys. Hung. 1987, 124, 865.Google Scholar
  12. 12.
    Kreglewski, M. J. Mol. Spectrosc. 1989, 133, 10.Google Scholar
  13. 13.
    Moller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.Google Scholar
  14. 14.
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Sratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomaasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Pskorz, P.; Koimaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; and Pople, J. A. Gaussian98 Rev. A.5 Gaussian, Inc., Pittsburgh, PA, 1998.Google Scholar
  15. 15.
    Pulay, P. Mol. Phys. 1969, 17, 197.Google Scholar
  16. 16.
    Guirgis, G. A.; Zhu, X.; Yu, Z.; Durig, J. R. J. Phys. Chem. A 2000, 104, 4383.Google Scholar
  17. 17.
    Frisch, M. J.; Yamaguchi, Y.; Gaw, J. F.; Schaefer III, H. F.; Binkley, J. S. J. Chem. Phys. 1986, 84, 531.Google Scholar
  18. 18.
    Amos, R. D. Chem. Phys. Lett. 1986, 124, 376.Google Scholar
  19. 19.
    Polavarapu, P. L. J. Phys. Chem. 1990, 94, 8106.Google Scholar
  20. 20.
    Chantry, G. W., In The Raman Effect; Anderson, A. Ed.; Marcel Dekker, New York, 1971; Vol. 1, Chap. 2.Google Scholar
  21. 21.
    Tamagake, K.; Tsuboi, M.; Hirakawa, A. Y. J. Chem. Phys. 1968, 48, 5536.Google Scholar
  22. 22.
    Belorgeot, C.; Stern, V.; Goff, N.; Kachmarsky, J.; Móller, K. D. J. Mol. Spectrosc. 1982, 92, 91.Google Scholar
  23. 23.
    Tsuboi, M.; Hirakawa, A. Y.; Ino, T.; Sasaki, T.; Tamagake, K. J. Chem. Phys. 1964, 41, 2721.Google Scholar
  24. 24.
    Tsuboi, M.; Hirakawa, A. Y.; Tamagake, K. J. Mol. Spectrosc. 1967, 22, 272.Google Scholar
  25. 25.
    Diallo, A. O.; Nguyen-Van-Thanh, Rossi, I. Spectrochim. Acta 1985, A41, 1485.Google Scholar
  26. 26.
    Iijima, T.; Jimbo, H.; Taguchi, M. J. Mol. Struct. 1986, 144, 381.Google Scholar
  27. 27.
    McKean, D. C. J. Mol. Struct. 1984, 113, 251.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Missouri-Kansas CityKansas City

Personalised recommendations