Advertisement

Tribology Letters

, Volume 11, Issue 1, pp 1–5 | Cite as

Thermal Stability of Fomblin Z and Fomblin Zdol Thin Films on Amorphous Hydrogenated Carbon

  • Ryan Z. Lei
  • Andrew J. Gellman
  • Paul Jones
Article

Abstract

Thermal desorption spectroscopy has been used to monitor the decomposition kinetics of Fomblin Zdol and Fomblin Z lubricant films adsorbed to the amorphous carbon overcoats of hard disk media. Comparisons have been made between Fomblin Z and Zdol with vastly different molecular weights (MW = 4000 and 50000), and films of Fomblin Z with different thickness (20 and 60 Å). Several species have been observed desorbing from the surface during heating. In all cases decomposition occurs over roughly the same temperature range of 600–750 K. This suggests that the desorption process is the result of decomposition and that the end groups of the Fomblin lubricants are not involved in determining the kinetics of this decomposition reaction. The activation barrier to the decomposition process has been estimated at 114±6 kJ/mol.

Fomblin Z Fomblin Zdol thin films amorphous hydrogenated carbon thermal stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C.M. Mate and A.M. Homola, in: Micro/Nanotribology and its Applications, ed. B. Bhushan (Kluwer Academic, Dordrecht, 1997) p. 647.Google Scholar
  2. [2]
    C.M. Mate, Tribol. Lett. 4 (1998) 119.Google Scholar
  3. [3]
    W.H. Gumprecht, ASLE Transact. 9 (1966) 24.Google Scholar
  4. [4]
    D. Sianesi, V. Zamboni, R. Fontanel and M. Binaghi, Wear 18 (1971) 85.Google Scholar
  5. [5]
    G. Marchionni, G. Ajroldi and G. Pezzin, Eur. Polym. J. 24 (1988) 1211.Google Scholar
  6. [6]
    G.H. Vurens and C.M. Mate, Appl. Surf. Sci. 59 (1992) 281.Google Scholar
  7. [7]
    J.-L. Lin, C.S. Bhatia and J.J.T. Yates, J. Vac. Sci. Technol. A 13 (1995) 163.Google Scholar
  8. [8]
    C.-Y. Chen, J. Wei, W. Fong, D.B. Bogy and C.S. Bhatia, J. Tribol. 122 (2000) 458.Google Scholar
  9. [9]
    J. Wei, W. Fong, D.B. Bogy and C.S. Bhatia, Tribol. Lett. 5 (1998) 203.Google Scholar
  10. [10]
    L. Cornaglia and A.J. Gellman, J. Vac. Sci. Technol. A 15 (1997) 2755.Google Scholar
  11. [11]
    L. Cornaglia, A.J. Gellman, S. Howe and S. Nadimpalli, in: ASME/ STLE Proceedings, eds. S. Bhatia and A.K. Menon (1996) p. 38.Google Scholar
  12. [12]
    N. Shukla, A.J. Gellman and J. Gui, Langmuir 16 (2000) 6562.Google Scholar
  13. [13]
    K. Paserba, N. Shukla, A.J. Gellman, J. Gui and B. Marchon, Langmuir 15 (1999) 1709.Google Scholar
  14. [14]
    L.S. Helmick and W.R. Jones, Jr., NASA Tech. Memor. (1990) 102.Google Scholar
  15. [15]
    L.S. Helmick and W.R. Jones, Jr., Lubr. Eng. 50 (1994) 449.Google Scholar
  16. [16]
    C.-Y. Chen, D.B. Bogy and C.S. Bhatia, J. Vac. Sci. Technol. A 18 (2000) 1809.Google Scholar
  17. [17]
    P.H. Kasai, Adv. Inform. Storage Systems 4 (1992) 291.Google Scholar
  18. [18]
    P.H. Kasai, W.T. Tang and P. Wheeler, Appl. Surf. Sci. 51 (1991) 201.Google Scholar
  19. [19]
    P.H. Kasai and P. Wheeler, App. Surf. Sci. 52 (1991) 91.Google Scholar
  20. [20]
    P.H. Kasai, Macromolecules 25 (1992) 6791.Google Scholar
  21. [21]
    P.A. Redhead, Vacuum 12 (1962) 203.Google Scholar
  22. [22]
    C.-Y. Chen, W. Fong, D.B. Bogy and C.S. Bhatia, Tribol. Lett. 7 (1999) 1.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Ryan Z. Lei
    • 1
  • Andrew J. Gellman
    • 1
  • Paul Jones
    • 2
  1. 1.Department of Chemical EngineeringCarnegie Mellon UniversityPittsburghUSA
  2. 2.Seagate Research CenterPittsburghUSA

Personalised recommendations