Advertisement

Topics in Catalysis

, Volume 16, Issue 1–4, pp 343–347 | Cite as

Periodic Control for Improved Low-Temperature Catalytic Activity

  • Per-Anders Carlsson
  • Peter Thormählen
  • Magnus Skoglundh
  • Hans Persson
  • Erik Fridell
  • Edward Jobson
  • Bengt Andersson
Article

Abstract

The influence of transient changes in the gas composition on the low-temperature activity of a commercial three-way catalyst and a Pt/Al2O3 model catalyst has been studied. By introducing well-controlled periodic O2 pulses to simple gas mixtures of CO or C3H6 (in N2), a substantial improvement of the low temperature oxidation activity was observed for both catalysts. The reason for low activity at low temperatures is normally attributed to self-poisoning by CO or hydrocarbons. The improved catalytic performance observed here is suggested to origin from the transients causing a surface reactant composition that is favourable for the reaction rate.

platinum carbon monoxide catalytic oxidation low temperature activity self-poisoning cold start emissions periodic pulsing transient changes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Jobson, G. Smedler, P. Malmberg, H. Bernler, O. Hjortsberg, I. Gottberg and Å. Rosén, Society of Automotive Engineers Technical Paper Series 940926 (1994).Google Scholar
  2. [2]
    G. Lenaers, Sci. Total Environ. 190 (1996) 139.Google Scholar
  3. [3]
    J. Wei, Adv. Catal. 24 (1975) 57.Google Scholar
  4. [4]
    G. Ertl, H. Knözinger and J. Weitkamp, Handbook of Heterogeneous Catalysis, Vol. 4 (VCH, Weinheim, 1997).Google Scholar
  5. [5]
    M. Skoglundh, P. Thormählen, E. Fridell, F. Hajbolouri and E. Jobson, Chem. Eng. Sci. 54 (1999) 4559.Google Scholar
  6. [6]
    A. Törncrona, M. Skoglundh, P. Thormählen, E. Fridell and E. Jobson, Appl. Catal. B 14 (1997) 131.Google Scholar
  7. [7]
    P. Thormählen, M. Skoglundh, E. Fridell and B. Andersson, J. Catal. 188 (1999) 300.Google Scholar
  8. [8]
    J.P. Bouronville, J.P. Franck and G. Martino, Stud. Surf. Sci. Catal. 16 (1983) 81.Google Scholar
  9. [9]
    P. Lööf, B. Kasemo, S. Andersson and A. Frestad, J. Catal. 130 (1991) 181.Google Scholar
  10. [10]
    M. Skoglundh, H. Johansson, L. Löwendahl, K. Jansson, L. Dahl and B. Hirschauer, Appl. Catal. B 7 (1996) 299.Google Scholar
  11. [11]
    G. Ertl, Adv. Catal. 37 (1990) 231.Google Scholar
  12. [12]
    T.A. Nijhuis, M. Makkee, A.D. van Langeveld and J.A. Moulijn, Appl. Catal. A 164 (1997) 237.Google Scholar
  13. [13]
    M. Rinnemo, D. Kulginov, S. Johansson, K.L. Wong, V.P. Zhdanov and B. Kasemo, Surf. Sci. 376 (1997) 297.Google Scholar
  14. [14]
    V.P. Zhdanov and B. Kasemo, Appl. Surf. Sci. 74 (1994) 147.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Per-Anders Carlsson
    • 1
  • Peter Thormählen
    • 1
  • Magnus Skoglundh
    • 2
  • Hans Persson
    • 3
  • Erik Fridell
    • 3
  • Edward Jobson
    • 4
    • 5
  • Bengt Andersson
    • 6
  1. 1.Competence Centre for Catalysis and Departments of Chemical Reaction Engineering and Applied PhysicsChalmers University of TechnologyGöteborgSweden
  2. 2.Competence Centre for Catalysis and Department of Applied Surface ChemistryChalmers University of TechnologyGöteborgSweden
  3. 3.Competence Centre for Catalysis and Department of Applied PhysicsChalmers University of TechnologyGöteborgSweden
  4. 4.Competence Centre for CatalysisChalmers University of TechnologyGöteborgSweden
  5. 5.Volvo Technological DevelopmentGöteborgSweden
  6. 6.Competence Centre for Catalysis and Department of Chemical Reaction EngineeringChalmers University of TechnologyGöteborgSweden

Personalised recommendations