Catalysis Letters

, Volume 74, Issue 3–4, pp 193–199

Theoretical Analysis of N2O to N2 Conversion During the Catalytic Decomposition of NO by Cu-Zeolites

  • D. Sengupta
  • J.B. Adams
  • W.F. Schneider
  • K.C. Hass
Article

Abstract

Catalytic reactions of N2O in Cu-exchanged silica zeolites (ZSM-5) have been investigated theoretically using first-principles density functional theory (DFT). We consider four possible reaction paths for the production of N2, including (i) ZCu+N2O→ZCuO+N2, (ii) ZCuO+N2O→ZCuO2+N2, (iii) ZCu+NO+N2O→ZCuNO2+N2 and (iv) ZCu+NO2+N2O→ZCuNO3+N2 (“Z” refers to zeolites). Reactions (i) and (iii) are found to be the most favorable, whereas reactions (ii) and (iv) have much larger barriers. The implication for N2O reactions in non-selective reduction of NO by CO is also discussed.

Cu-ZMS-5 zeolites DFT nitric oxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Shelef, Chem. Rev. 95 (1995) 209.Google Scholar
  2. [2]
    M. Iwamoto andH. Hamada, Catal. Today 10 (1991) 57.Google Scholar
  3. [3]
    Y. Li andW.K. Hall, J. Phys. Chem. 94 (1990) 6145.Google Scholar
  4. [4]
    G.D. Lei,B.J. Adelman,J. Sarkany andW.M.H. Sachtler, App. Catal. B 5 (1995) 245.Google Scholar
  5. [5]
    B.R. Goodman,W.F. Schneider,K.C. Hass andJ.B. Adams, Catal. Lett. 56 (1998) 183.Google Scholar
  6. [6]
    B.R. Goodman,W.F. Schneider,K.C. Hass andJ.B. Adams, J. Phys. Chem. B 103 (1999) 10452.Google Scholar
  7. [7]
    A.W. Aylor,S.C. Larsen,J.A. Reimer andA.T. Bell, J. Catal. 157 (1995) 592.Google Scholar
  8. [8]
    W.F. Schneider,K.C. Hass,R. Ramprasad andJ.B. Adams, J. Phys. Chem. B 102 (1998) 3692.Google Scholar
  9. [9]
    W.F. Schneider,K.C. Hass,R. Ramprasad andJ.B. Adams, J. Phys. Chem. B 101 (1997) 4353.Google Scholar
  10. [10]
    Y. Li andJ.N. Armor, Appl. Catal. 76 (1991) L1.Google Scholar
  11. [11]
    F. Radtke,R.A. Koeppel andA. Baiker, Appl. Catal. 107 (1994) L125; 157 (1995) 592.Google Scholar
  12. [12]
    R. Kumashiro,Y. Kuroda andM. Nagao, J. Phys. Chem. B 103 (1999) 89.Google Scholar
  13. [13]
    W.F. Schneider,K.C. Hass,R. Ramprasad andJ.B. Adams, J. Phys. Chem. 100 (1996) 6032.Google Scholar
  14. [14]
    Y. Yokomichi,T. Yamabe,H. Ohtsuka andT. Kakumoto, J. Phys. Chem. 100 (1996) 14424.Google Scholar
  15. [15]
    Y. Yokomichi,H. Ohtsuka,T. Tabata,O. Okada,Y. Yokoi,H. Ishikawa,R. Yamaguchi,H. Matusi,A. Tachibana andY. Yamabe Catal. Today 23 (1995) 431.Google Scholar
  16. [16]
    L. Rodriguez-Santiago,M. Sierka,V. Branchadell,M. Sodupe andJ. Sauer, J. Am. Chem. Soc. 120 (1998) 1545.Google Scholar
  17. [17]
    H. Kobayashi andK. Ohkubo, Appl. Surf. Sci. 121/122 (1997) 111.Google Scholar
  18. [18]
    B.L. Trout,A.K. Chakraborty andA.T. Bell, J. Phys. Chem. 100 (1996) 17582.Google Scholar
  19. [19]
    B.L. Trout,A.K. Chakraborty andA.T. Bell, J. Phys. Chem. 100 (1996) 4173.Google Scholar
  20. [20]
    K.C. Hass andW.F. Schneider, Phys. Chem. Chem. Phys. 1 (1999) 639.Google Scholar
  21. [21]
    E.J. Baerends,D.E. Ellis andP. Ross, Chem. Phys. 2 (1973) 41.Google Scholar
  22. [22]
    A.D. Becke, Phys. Rev. A 38 (1988) 3098.Google Scholar
  23. [23]
    J.P. Perdew, Phys. Rev. B 33 (1986) 8822.Google Scholar
  24. [24]
    A. Dandekar andM.A. Vannice, Appl. Catal. B 22 (1999) 179.Google Scholar
  25. [25]
    CRC Handbook of Chemistry and Physics, 78th Ed. (CRC Press).Google Scholar
  26. [26]
    A.M. Mebel,M.C. Lin,K. Morokuma andC.F. Melius, Int. J. Chem. Kinet. 28 (1996) 693.Google Scholar
  27. [27]
    D. Sengupta,W.F. Schneider,K.C. Hass andJ.B. Adams, Catal. Lett. 61 (1999) 179.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • D. Sengupta
    • 1
  • J.B. Adams
    • 1
  • W.F. Schneider
    • 2
  • K.C. Hass
    • 2
  1. 1.Department of Chemical, Bio and Materials EngineeringArizona State UniversityTempeUSA
  2. 2.Ford Research LaboratoryDearbornUSA

Personalised recommendations