Russian Journal of Plant Physiology

, Volume 48, Issue 3, pp 364–369 | Cite as

The Role of Wheat Germ Agglutinin in Plant–Bacteria Interactions: A Hypothesis and the Evidence in Its Support

  • L. P. Antonyuk
  • V. V. Ignatov


Wheat plants are known to develop the associative symbiosis with the rhizobacterium Azospirillum brasilense.We studied the interaction of a lectin, wheat germ agglutinin (WGA), which is also found in wheat roots, with A. brasilense, strain sp245. When added to the azospirillum culture to the final concentration of 10–8to 10–9M, WGA enhanced IAA production, dinitrogen fixation, and ammonium excretion by bacterial cells. WGA also promoted the synthesis of proteins, both new and those already present in bacterial cells. The hypothesis that WGA is a signal molecule rerouting the bacterial metabolism in the direction favorable for the growth and development of the host plant has been put forward. It is suggested that signal properties of WGA are the basis for one of the functions of this lectin and essential for the effective associative symbiosis.

Azospirillum brasilense associative symbiosis wheat germ agglutinin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wright, C.S., Crystallographic Elucidation of the Saccharide Binding Mode in Wheat Germ Agglutinin and Its Biological Significance, J. Mol. Biol., 1980, vol. 141, pp. 267-291.Google Scholar
  2. 2.
    Stinissen, H.M. and Peumans, W.J., Recent Advances in Biochemistry, Cell Biology, Physiology, Biosynthesis and Genetics of Gramineae Lectins, Biochem. Pflanzen., 1985, vol. 180, pp. 85-106.Google Scholar
  3. 3.
    Mirelman, D.E., Galun, E., Sharon, N., and Lotan, R., Inhibition of Fungal Growth by Wheat Germ Agglutinin, Nature, 1975, vol. 256, pp. 414-416.Google Scholar
  4. 4.
    Peumans, W.J. and van Damme, E.J.M., Lectins as Plant Defense Proteins, Plant Physiol., 1995, vol. 109, pp. 347-352.Google Scholar
  5. 5.
    Mishkind, M., Raikhel, N.V., Palevitz, B.A., and Keegstra, K., Immunocytochemical Localization of Wheat Germ Agglutinin in Wheat, J. Cell Biol., 1982, vol. 92, pp. 753-764.Google Scholar
  6. 6.
    Mishkind, M., Raikhel, N.V., Palevitz, B.A., and Keegstra, K., The Cell Biology of Wheat Germ Agglutinin and Related Lectins, Chemical Taxonomy, Molecular Biology and Function of Plant Lectins, New York: Alan, R. Liss, 1983, pp. 163-176.Google Scholar
  7. 7.
    Steenhoudt, O. and Vanderleyden, J., Azospirillum, a Free-Living Nitrogen-Fixing Bacterium Closely Associated with Grasses: Genetic, Biochemical and Ecological Aspects, FEMS Microbiol. Rev., 2000, vol. 24, pp. 487-506.Google Scholar
  8. 8.
    Red'kina, T.V., The Mechanism of Beneficial Effect of Bacteria from the Genus Azospirillum on Higher Plants, Biologicheskii azot v sel'skom khozyaistve SSSR (Biological Nitrogen in the Agriculture of USSR), Mishustin, E.N., Ed., Moscow: Nauka, 1989, pp. 132-141.Google Scholar
  9. 9.
    Barbieri, P. and Galli, E., Effect on Wheat Root Developments of Inoculation with an Azospirillum brasilense Mutant with Altered Indole-3-Acetic Acid Production, Res. Microbiol., 1993, vol. 144, pp. 69-75.Google Scholar
  10. 10.
    Antonyuk, L.P., Fomina, O.R., Galkin, M.A., and Ignatov, V.V., The Effect of Wheat Germ Agglutinin on Dinitrogen Fixation, Glutamine Synthetase Activity and Ammonia Excretion in Azospirillum brasilense sp245, FEMS Microbiol. Lett., 1993, vol. 110, pp. 285-290.Google Scholar
  11. 11.
    Iosipenko, A.D., Sergeeva, E.I., Antonyuk, L.P., and Ignatov, V.V., The Effect of Wheat Lectin on the Indolyl-3-Acetic Acid Synthesis in Azospirillum brasilense sp245, Dokl. Akad. Nauk, 1994, vol. 336, pp. 559-561.Google Scholar
  12. 12.
    Antonyuk, L.P., Fomina, O.R., and Ignatov, V.V., The Effect of Wheat Lectin on the Metabolism of Azospirilum brasilense: The Induction of Protein Biosynthesis, Mikrobiologiya, 1997, vol. 66, pp. 172-178.Google Scholar
  13. 13.
    Antonyuk, L.P., Kamnev, A.A., Colina, M., Gardiner, P.H.E., and Ignatov, V.V., Calcium and the Hormone-Like Regulation of Metabolism in the Bacterium Azospirillum brasilense, Metal Ions in Biology and Medicine, vol. 5, Collery, P. et al., Eds., Paris: John Libbey Eurotext, 1998, pp. 322-326.Google Scholar
  14. 14.
    Assmus, B., Hutzler, P., Kirchhof, G., Amann, R., Lawrence, J.R., and Hartmann, A., In situ Localization of Azospirillum brasilense in the Rhizosphere of Wheat with Fluorescently Labeled, rRNA-Targeted Oligonucleotide Probes and Scanning Confocal Laser Microscopy, Appl. Environ. Microbiol., 1995, vol. 61, pp. 1013-1019.Google Scholar
  15. 15.
    Iosipenko, O.A., Stadnik, G.I., and Ignatov, V.V., Lectins of Wheat Seedling Roots during Plant Interaction with Associated Microorganisms from the Genus Azospirillum, Prikl. Biokhim. Microbiol., 1996, vol. 32, pp. 458-461.Google Scholar
  16. 16.
    Bradford, M.M., A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Anal. Biochem., 1976, vol. 72, pp. 248-254.Google Scholar
  17. 17.
    Burlakova, E.B., Effects of Ultra-Low Doses, Vestn. Akad. Nauk, 1994, vol. 64, pp. 425-431.Google Scholar
  18. 18.
    Muromtsev, G.S. and Danilina, E.E., Endogenous Chemical Signals in Plants and Animals, Usp. Sovrem. Biol., 1996, vol. 116, pp. 533-551.Google Scholar
  19. 19.
    Kulinskii, V.I., Short-Term Regulation of the Hormonal Functions of Mitochondria by Hormones and Second Messengers, Usp. Biol. Khim., 1997, vol. 37, pp. 171-209.Google Scholar
  20. 20.
    Rudiger, H., Plant Lectins-More than Just Tools for Glycoscientists: Occurrence, Structure, and Possible Functions of Plant Lectins, Acta Anat. (Basel), 1998, vol. 161, pp. 130-152.Google Scholar
  21. 21.
    Downie, J.A., Sutton, J.M., Dean, G., Davies, A.E., Finnie, C., Chelani, S., Lea, E.J.A., Wilson, K.E., and Firmin, J., Determinants of Nodulation Efficiency in the Symbiosis between Pisum sativum and Rhizobium leguminosarum, Nitrogen Fixation: Fundamentals and Applications, Tikhonovich, I.A. et al., Eds., Dordrecht: Kluwer, 1995, pp. 269-274.Google Scholar
  22. 22.
    Cuatrecasas, P. and Tell, G.P.E., Insulin-Like Activity of Concanavalin A and Wheat Germ Agglutinin-Direct Interactions with Insulin Receptors, Proc. Natl. Acad. Sci. USA, 1973, vol. 70, pp. 485-489.Google Scholar
  23. 23.
    Del Gallo, M., Negi, M., and Neyra, C.A., Calcofluorand Lectin-Binding Exocellular Polysaccharides of Azospirillum brasilense and Azospirillum lipoferum, J. Bacteriol., 1989, vol. 171, pp. 3504-3510.Google Scholar
  24. 24.
    Shchyogolev, S.Yu. and Zhulin, I.B., Effective Method of Cell Agglutination Analysis by Lectins, Lectins: Biology, Biochemistry, Clinical Biochemistry, vol. 7, Kocourek, J. and Freed D.L.J., Eds., St. Louis (USA): Sigma Chem. Comp., 1990, pp. 405-409.Google Scholar
  25. 25.
    Konnova, S.A., Makarov, O.E., Skvortsov, I.M., and Ignatov, V.V., Isolation, Fractionation and Some Properties of Polysaccharides Produced in a Bound Form by Azospirillum brasilense and Their Possible Involvement in Azospirillum-Wheat Root Interactions, FEMS Microbiol. Lett., 1994, vol. 118, pp. 93-100.Google Scholar
  26. 26.
    Nikitina, V.E., Alen'kina, S.A., Ponomareva, E.G., and Savenkova, N.N., Lectins of Azospirillum Cell Surface in Their Interaction with Wheat Roots, Mikrobiologiya, 1996, vol. 65, pp. 165-170.Google Scholar
  27. 27.
    Schloter, M. and Hartmann, A., Endophytic and Surface Colonization of Wheat Roots (Triticum aestivum) by Different Azospirillum brasilense Strains Studied with Strain Specific Monoclonal Antibodies, Symbiosis, 1998, vol. 25, pp. 159-179.Google Scholar
  28. 28.
    Karpati, E., Kiss, P., Ponyi, T., Fendrik, I., de Zamaroczy, M., and Orosz, L., Interaction of Azospirillum lipoferum with Wheat Germ Agglutinin Stimulates Nitrogen Fixation, J. Bacteriol., 1999, vol. 181, pp. 3949-3955.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • L. P. Antonyuk
    • 1
  • V. V. Ignatov
    • 1
  1. 1.Institute of Biochemistry and Physiology of Plants and MicroorganismsRussian Academy of SciencesSaratovRussia

Personalised recommendations