Journal of Fluorescence

, Volume 11, Issue 2, pp 89–100

Cytoplasmic Changes in Cardiac Cells During a Contraction Cycle Detected by Fluorescence Polarization

  • Dror Fixler
  • Reuven Tirosh
  • Asher Shainberg
  • Motti Deutsch
Article

Abstract

Intracellular structural changes, occurring in a cardiac myocyte during a contraction cycle, were investigated by means of intracellular fluorescein fluorescence polarization (IFFP), in comparison to cytoplasmic concentration of Ca2+ [Ca2+]i measured by indo-1. A simple physical model is presented. It assumes a biphase intracellular matrix, differing in its potency to restrict hosting fluorescent probe mobility. The first is a mobile nonrestricting phase, made mostly of aqua (aqua zone), while the second is a mobile-restricting phase, allocated mainly at the proximity of the filament sites. Their physicochemical properties such as [Ca2+], viscosity, and pH, may differ, thereby influencing the hosting probe fluorescence characteristics differently. These possible influences were examined experimentally. Based on experimental data, the model enables the evaluation, to first order of approximation, of the relative number of fluorescent probes populating the two phases and the time variation viscosity (ηr(t)) of the mobile-restricting filament zones taking place throughout the contraction cycle.

Cardiac myocyte ion concentration indo-1 intracellular Ca2+ 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    D. G. Allen and C. H. Orchard (1983) J. Physiol (Lond.) 355, 555-567.Google Scholar
  2. 2.
    T. S. Allen, N. Ling, M. Irving, and Y. E. Goldman (1996) Biophys. J. 70, 1847-1862.Google Scholar
  3. 3.
    E. N. da C. Andrade (1954) Endeavour, 12, 117-127.Google Scholar
  4. 4.
    D. Axelrod (1979) Biophys. J. 26, 557-574.Google Scholar
  5. 5.
    G. G. Belford, R. L. Belford, and G. Weber (1972) Proc. Natl. Acad. Sci. USA 69, 1392-1393.Google Scholar
  6. 6.
    M. Bental and C. Deutsch (1994) Am. J. Physiol. 266, C541-C551.Google Scholar
  7. 7.
    G. Berke (1989) in W. E. Paul (Ed.), Fundamental Immunology, Raven Press, New York, pp. 735-764.Google Scholar
  8. 8.
    J. Borejdo and S. Putnam (1977) Biochim. Biophys. Acta 459, 578-595.Google Scholar
  9. 9.
    T. P. Burghardt (1985) Biophys. J. 48, 623-631.Google Scholar
  10. 10.
    S. C. Calaghan and E. White (1999) Prog. Biophys. Mol. Biol. 71, 59-90.Google Scholar
  11. 11.
    I. D. Campbell and R. A. Dwek (1984) Biological Spectroscopy, Benjamin Cummings, Menlo Park, CA, pp. 103-107.Google Scholar
  12. 12.
    S. Chaitchik, M. Deutsch, O. Asher, G. Krauss, P. Lebovich, H. Michlin, and A. Weinreb (1988) Eur. J. Cancer Clin. Oncol. 25, 861-866.Google Scholar
  13. 13.
    M. Chen, H. Hashizume, C. Y. Xiao, A. Hara, and Y. Abiko (1997) Life Sci. 60, PL57-PL62.Google Scholar
  14. 14.
    M. Cohen-Kashi, M. Deutsch, R. Tirosh, H. Rachmani, and A. Weinreb (1997) Spectrochim. Acta A 53, 1655-1661.Google Scholar
  15. 15.
    M. Deutsch, I. Ron, A. Weinreb, R. Tirosh, and S. Chaitchik (1996) Cytometry 23, 159-165.Google Scholar
  16. 16.
    M. Deutsch, N. Zurgil, M. Kaufman, and G. Berke (2000) in K. P. Kearse (Ed.), T Cell Protocols: Development and Activation, Humana Press, Totowa, NJ, pp. 221-242.Google Scholar
  17. 17.
    S. Ebashi and M. Endo (1968) Prog. Biophys. Mol. Biol. 18, 123-183.Google Scholar
  18. 18.
    M. Ehrenberg and R. Rigler (1976) Q. Rev. Biophys. 9, 69-81.Google Scholar
  19. 19.
    A. Eisenthal, O. Marder, D. Dotan, S. Baron, B. Lifschitz-Mercer, S. Chaitchik, R. Tirosh, A. Weinreb, and M. Deutsch (1996) Biol. Cell. 86, 145-150.Google Scholar
  20. 20.
    D. El-Ani, K. A. Jacobson, and A. Shainberg (1994) Biochem. Pharmacol. 48, 727-735.Google Scholar
  21. 21.
    P. P. Feofilov (1961) The Physical Basis of Polarized Emission, Consultants Bureau, New York.Google Scholar
  22. 22.
    D. Fixler, R. Tirosh, A. Eisenthal, S. Lalchuk, O. Marder, and M. Deutsch (1998) J. Biomed. Opt. 3, 312-325.Google Scholar
  23. 23.
    E. Gelman-Zhornitsky, M. Deutsch, R. Tirosh, Y. Yishay, A. Weinreb, and H. M. Shapiro (1997) Biomed. Opt. 2, 186-194.Google Scholar
  24. 24.
    M. Grynkiewicz, M. Poenie, and R. Y. Tsien (1985) J. Biol. Chem. 260, 3440-3550.Google Scholar
  25. 25.
    G. G. Guilbault (1967) Fluorescence: Theory, Instrumentation and Practice, Marcel Dekker, New York, p. 77.Google Scholar
  26. 26.
    R. A. Haworth and D. Redon (1998) Cell Calcium 24, 263-273.Google Scholar
  27. 27.
    M. Kaplan, E. Trebnyikov, and G. Berke (1997) J. Immunol. Methods 201, 15-24.Google Scholar
  28. 28.
    K. Kinosita, S. Kowato, and A. Ikegami (1977) Biophys. J. 20, 289-305.Google Scholar
  29. 29.
    A. Kupfer and G. Dennert (1984). J. Immunol. 133, 2762-2766.Google Scholar
  30. 30.
    S. S. Lehrer and M. A. Geeves (1998) J. Mol. Biol. 277, 1081-1089.Google Scholar
  31. 31.
    G. Lipari and A. Szabo (1980) Biophys. J. 30, 489-506.Google Scholar
  32. 32.
    K. K. Meisingset and H. B. Steen (1981) Cytometry 1, 272-278.Google Scholar
  33. 33.
    J. M. Metzger (1996) Am. J. Physiol. 270, H1008-H1014.Google Scholar
  34. 34.
    R. F. Murphy, S. Powers, M. Verderame, C. R. Cantor, and R. Pollack (1982) Cytometry 2, 402-406.Google Scholar
  35. 35.
    R. F. Murphy, S. Powers, and C. R. Cantor (1984) J. Cell Biol. 98, 1757-1762.Google Scholar
  36. 36.
    F. Perrin (1929) Ann. Phys. 12, 169-275.Google Scholar
  37. 37.
    F. Perrin (1936) J. Phys. Rad. 7, 1-11.Google Scholar
  38. 38.
    B. Rotman and B. W. Papermaster (1966) Proc. Natl. Acad. Sci. USA 55, 134-141.Google Scholar
  39. 39.
    R. J. Solaro and H. M. Rarick (1998) Circ. Res. 83, 471-480.Google Scholar
  40. 40.
    M. Sonenberg and A. S. Schneider (1977) in P. Cuatrecasas and M. F. Greaves (Eds.), Receptors and Recognition, Ser. A, Vol. 4, Chapman and Hall, London, pp. 1-32.Google Scholar
  41. 41.
    H. A. Spurgeon, M. D. Stern, G. Baartz, S. Raffaeli, R. G. Hansford, A. Talo, E. G. Lakatta, and M. C. Capogrossi (1990) Am. J. Physiol. 258, H574-H586.Google Scholar
  42. 42.
    M. Sunray, M. Deutsch, M. Kaufman, R. Tirosh, A. Weinreb, and H. Rachmani (1997) Spectrochim. Acta Part A 53, 1645-1653.Google Scholar
  43. 43.
    M. Sunray, M. Kaufman, N. Zurgil, and M. Deutsch (1999) Biochem. Biophys. Res. Commun. 261, 712-719.Google Scholar
  44. 44.
    J. A. Thomas, R. N. Buchsbaum, A. Zimniak, and E. Racker (1979) Biochemistry 18, 2210-2218.Google Scholar
  45. 45.
    R. T. Tregear and R. M. Mendelson (1975) Biophys. J. 15, 455-467.Google Scholar
  46. 46.
    S. Udenfriend, P. Zaltzman-Nirenburg, and G. Guroff (1966) Arch. Biochem. 116, 261-270.Google Scholar
  47. 47.
    R. D. Vaughan-Jones, W. J. Lederer, and D. A. Eisner (1983) Nature 301, 522-524.Google Scholar
  48. 48.
    J. W. M. Visser, A. A. M. Jongeling, and H. J. Tanke (1979) J. Histochem. Cytochem. 27, 32-35.Google Scholar
  49. 49.
    H. Vogel and F. Jahnig (1985) Proc. Natl. Acad. Sci. USA 82, 2029-2033.Google Scholar
  50. 50.
    G. Weber (1952) Biochem. J. 51, 145-155.Google Scholar
  51. 51.
    G. Weber (1971) J. Chem. Phys. 55, 2399-2404.Google Scholar
  52. 52.
    G. Weill and J. Sturm (1975) Biopolymers 14, 2537-2553.Google Scholar
  53. 53.
    T. Yanagida and F. Oosawa (1978) J. Mol. Biol. 126, 507-524.Google Scholar
  54. 54.
    N. Zurgil, M. Kaufman, and M. Deutsch (1999) J. Immunol. Methods 229, 23-34.Google Scholar
  55. 55.
    N. Zurgil, Y. Levy, M. Deutsch, B. Gilburd, J. George, D. Harats, M. Kaufman, and Y. Shoenfeld (1999) Clin. Cardiol. 22, 526-532.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Dror Fixler
    • 1
  • Reuven Tirosh
    • 1
  • Asher Shainberg
    • 2
  • Motti Deutsch
    • 1
  1. 1.The Jerome Schottenstein Cellscan Center for Early Detection of Cancer, Physics DepartmentBar-Ilan UniversityRamat-GanIsrael
  2. 2.Faculty of Life SciencesBar-Ilan UniversityRamat-GanIsrael

Personalised recommendations