Acta Biotheoretica

, Volume 50, Issue 3, pp 189–204 | Cite as

A Brief History of R0 and a Recipe for its Calculation

  • J.A.P. Heesterbeek


In this paper I present the genesis of R0 in demography, ecology and epidemiology, from embryo to its current adult form. I argue on why it has taken so long for the concept to mature in epidemiology when there were ample opportunities for cross-fertilisation from demography and ecology from where it reached adulthood fifty years earlier. Today, R0 is a more fully developed adult in epidemiology than in demography. In the final section I give an algorithm for its calculation in heterogeneous populations.


Final Section Heterogeneous Population Ample Opportunity Adult Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitchison, J. and G.S. Watson (1988). A not-so-plain tale from the Raj. In: The Influence of Scottish Medicine. D.A. Dow (ed.). Parthenon, Carnforth, pp 113-128.Google Scholar
  2. Anderson, R.M. (1981). Population ecology of infectious diseases. In: Theoretical Ecology. R.M. May (ed.). Blackwell, Oxford. pp. 318-355.Google Scholar
  3. Anderson, R.M. and R.M. May (1979a). Population biology of infectious diseases. Part I. Nature 280: 361-367.Google Scholar
  4. Anderson, R.M. and R.M. May (1979b). Population biology of infectious diseases. Part II. Nature 280: 455-461.Google Scholar
  5. Anderson, R.M. and R.M. May (1982a). Directly transmitted infectious diseases: control by vaccination. Science 215: 1053-1060.Google Scholar
  6. Anderson, R.M. and R.M. May (eds.) (1982b). Population Biology of Infectious Diseases. Springer-Verlag, Berlin.Google Scholar
  7. Anderson, R.M. and R.M. May (1991). Infectious Diseases of Humans: transmission and control. Oxford University Press, Oxford.Google Scholar
  8. Bailey, N.J.T. (1953). The total size of a general stochastic epidemic. Biometrika 40: 177-185.Google Scholar
  9. Bailey, N.J.T. (1957). Mathematical Theory of Epidemics. Griffin, London.Google Scholar
  10. Bartlett, M.S. (1955). An Introduction to Stochastic Processes. Cambridge University Press, Cambridge.Google Scholar
  11. Barucha-Reid, A.T. (1956). On the stochastic theory of epidemics. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability. Volume IV: Biology and Problems of Health, J. Neyman (ed.). University of California Press, Berkeley. pp. 111-119.Google Scholar
  12. Becker, N. (1975). The use of mathematical models in determining vaccination policies. Bulletin of the International Statistics Institute 46: 478-490.Google Scholar
  13. Begon, M., J. L. Harper and C. R. Townsend (1998). Ecology: Individuals, Populations and Communities. 3rd edition. Blackwell Science, Oxford.Google Scholar
  14. Bockh, R. (1886). Statistsiches Jahrbuch der Stadt Berlin, Volume 12, Statistik des Jahres 1884. P. Stankiewicz, Berlin.Google Scholar
  15. Diekmann, O. and J.A.P. Heesterbeek (2000). Mathematical Epidemiology of Infectious Diseases: model building, analysis and interpretation. John Wiley and Sons, Chichester.Google Scholar
  16. Diekmann, O., J.A.P. Heesterbeek and J.A.J. Metz (1990). On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. Journal of Mathematical Biology 28: 365-382.Google Scholar
  17. Dietz, K. (1975). Transmission and control of arboviruses. In: Epidemiology, D. Ludwig and K.L. Cooke (eds.). SIAM, Philadelphia. pp. 104-121.Google Scholar
  18. Dietz, K. (1988). The first epidemic model: a historical note on P.D. En'ko. Australian Journal of Statistics 30A: 56-65.Google Scholar
  19. Dietz, K. (1993). The estimation of the basic reproduction number for infectious diseases. Statistical Methods in Medical Research 2: 23-41.Google Scholar
  20. Dietz, K. (1995). Some problems in the theory of infectious disease transmission and control. In: Epidemic Models: their Structure and Relation to Data, D. Mollison (ed.). Cambridge University Press, Cambridge, pp. 3-16.Google Scholar
  21. Dietz, K., L. Molineaux and A. Thomas (1974). A malaria model tested in the African Savannah. Bulletin of the World Health Organization 50: 347-357.Google Scholar
  22. Dublin, L.I. and A.J. Lotka (1925). On the true rate of natural increase. Journal of the American Statistical Association 150: 305-339.Google Scholar
  23. En'ko, P.D. (1889). On the course of epidemics of some infectious diseases. Vrach. St. Petersburg, X, 1008-1010, 1039–1042, 1061–1063 (in Russian). English translation by K. Dietz, 1989. International Journal of Epidemiology 18: 749–755.Google Scholar
  24. Feller, W. (1941). On the integral equation of renewal theory. Annals of Mathematical Statistics 12: 243-267.Google Scholar
  25. Fine, P.E.M. (1975). Ross's a priori pathometry -a perspective. Proceeding of the Royal Society of Medicine 68: 547-551.Google Scholar
  26. Fine, P.E.M. and J.A. Clarkson (1982). Measles in England and Wales. International Journal of Epidemiology 11: 5-14 (part I), 15–25 (part II).Google Scholar
  27. Harvey, W.F. (1943). Anderson Gray McKendrick. Edinburgh Medical Journal 50: 500-506.Google Scholar
  28. Heesterbeek, J.A.P. (1992). R 0. PhD Thesis. University of Leiden.Google Scholar
  29. Heesterbeek, J.A.P. and K. Dietz (1996). The concept of R 0 in epidemic theory. Statistica Neerlandica 50: 89-110.Google Scholar
  30. Hethcote, H.W. (1975). Mathematical models for the spread of infectious diseases. In: Epidemiology, D. Ludwig and K.L. Cooke (eds.). SIAM, Philadelphia. pp. 122-131.Google Scholar
  31. Kermack, W.O. and A.G. McKendrick (1927). Contributions to the mathematical theory of epidemics-I. Proceedings of the Royal Society of Medicine 115A: 700-721 (reprinted in Bulletin of Mathematical Biology 53: 33–55, 1991).Google Scholar
  32. Kingsland, S.E. (1985). Modeling Nature: episodes in the history of population ecology. University of Chicago Press, Chicago.Google Scholar
  33. Knibbs, G.H. (1917). Mathematical theory of population, of its character and fluctuations, and of the factors which influence them. Appendix to Census of the Commonwealth of Australia. McCarron, Bird & Co, Melbourne.Google Scholar
  34. Kuczynski, R.R. (1932). Fertility and Reproduction. Falcon Press, New York.Google Scholar
  35. Kuczynski, R.R. (1935). The Measurement of Population Growth. Sidgwick and Jackson, London.Google Scholar
  36. Lotka, A.J. (1907). Relation between birth rates and death rates. Science 26: 21-22.Google Scholar
  37. Lotka, A.J. (1913). A natural population norm. J. Washington. Acad. Science 3: 241-293.Google Scholar
  38. Lotka, A.J. (1919). A contribution to quantitative epidemiology. Journal of the Washington Academy of Science 9: 73-77.Google Scholar
  39. Lotka, A.J. (1923). Contribution to the analysis of malaria epidemiology. I: General part. Supplement to American Journal of Hygiene 3: 1-37 (parts II to V in same volume).Google Scholar
  40. Lotka, A.J. (1925a). The measure of net fertility. Journal of the Washington Academy of Science 15: 469-472.Google Scholar
  41. Lotka, A.J. (1925b). Elements of Physical Biology. Williams and Wilkins Company, Baltimore.Google Scholar
  42. Macdonald, G. (1952). The analysis of equilibrium in malaria. Tropical Diseases Bulletin 49: 813-829.Google Scholar
  43. Macnamara, F.N. (1955). Man as the host of yellow fever virus. Dissertation for M.D. degree, University of Cambridge.Google Scholar
  44. May, R.M. (1976). Estimating r: a pedagogical note. American Naturalist 110: 469-499.Google Scholar
  45. May, R.M. (1981). Models for single populations. In: Theoretical Ecology. R.M. May (ed.). Blackwell, Oxford. pp. 30-52.Google Scholar
  46. Nye, E.R. and M.E. Gibson (1997). Ronald Ross, Malariologist and Polymath, a Biography. Macmillan Press, London.Google Scholar
  47. Ross, R. (1911). The Prevention of Malaria. 2nd edition. John Murray, London.Google Scholar
  48. Ross, R. (1916). An application of the theory of probabilities to the study of a priori pathometry -Part I. Proceedings of the Royal Society London A 42: 204-230.Google Scholar
  49. Ross, R. and H.P. Hudson (1917a). An application of the theory of probabilities to the study of a priori pathometry -Part II. Proceedings of the Royal Society London A 43: 212-225.Google Scholar
  50. Ross, R. and H.P. Hudson (1917b). An application of the theory of probabilities to the study of a priori pathometry -Part III. Proceedings of the Royal Society London A 43: 225-240.Google Scholar
  51. Samuelson, P.A. (1977). Resolving a historical confusion in population analysis. In: Mathematical Demography, selected papers, D. Smith and N. Keyfitz (eds.). Springer-Verlag, Berlin. pp. 109-130.Google Scholar
  52. Sharpe, F.R. and A.J. Lotka (1911). A problem in age distribution. Philosophical Magazine 21: 435-438.Google Scholar
  53. Smith, C.E.G. (1964). Factors in the transmission of virus infections from animal to man. Scientific Basis of Medicine Annual Review 1964. pp. 125-150.Google Scholar
  54. Smith, D. and N. Keyfitz (eds.) (1977). Mathematical Demography, selected papers. Springer-Verlag, Berlin.Google Scholar
  55. Thompson, W.R. (1923). La théorie mahématique de l'action des parasites entomophages. Revue Générale des Sciences Pures et Appliqueés 34: 202-210.Google Scholar
  56. Whittle, P. (1955). The outcome of a stochastic epidemic -a note on Bailey's paper. Biometrica 42: 116-122.Google Scholar
  57. Yorke, J.A., N. Nathanson, G. Pianigiani and J. Martin (1979). Seasonality and the requirements for perpetuation and eradication of viruses in populations. American Journal of Epidemiology 109: 103-123.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • J.A.P. Heesterbeek
    • 1
  1. 1.Faculty of Veterinary MedicineUniversity of Utrecht, Quantitative Veterinary Epidemiology GroupUtrechtThe Netherlands

Personalised recommendations