, Volume 471, Issue 1–3, pp 57–69

Comparison of deep-water coral reefs and lithoherms off southeastern USA

  • John K. Reed


Two types of deep-water coral bioherms occur off the coast of southeastern United States: Oculina and Lophelia/Enallopsammia. The deep-water Oculina bioherms form an extensive reef system at depths of 70–100 m along the shelf edge off central eastern Florida. These reefs are comprised of numerous pinnacles and ridges, 3–35 m in height. Each pinnacle is a bank of unconsolidated sediment and coral debris that is capped on the slopes and crest with living and dead colonies of Oculina varicosa, the ivory tree coral. In comparison, deep-water reefs of Lophelia pertusa and Enallopsammia profunda corals occur at depths of 500–850 m (maximum 150-m relief) along the base of the Florida-Hatteras slope in the Straits of Florida. On the western edge of the Blake Plateau off South Carolina and Georgia, 54-m high banks of Enallopsammia and Lophelia occur at depths of 490–550 m, whereas on the eastern edge of the plateau the reefs form structures 146 m in height and at depths of 640–869 m. The geomorphology and functional structure of both the Oculina and Lophelia reefs are similar. North of Little Bahama Bank, at depths of 1000–1300 m, a region of bioherms is dominated by the coral Solenosmilia sp.; Lophelia is reportedly absent. This paper summarizes 25 years of submersible studies on the deep-water Oculina reefs, describes submersible reconnaissance of deep-water Lophelia reefs off the southeastern United States, and contrasts these types of bioherms with the deep-water lithoherms in the Straits of Florida west of the Bahamas.

Oculina Lophelia lithoherm deep-water coral reef 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avent, R. M., M. E. King & R. H Gore, 1977. Topographic and faunal studies of shelf-edge prominences off the central eastern Florida coast. Int. Rev. ges. Hydrobiol. 62: 185–208.Google Scholar
  2. Brooke, S. D., 1998. Reproduction and larval biology of the ivory tree coral Oculina varicose. Am. Zool. 38: 100a.Google Scholar
  3. Cairns, S. D., 1979. The deep-water scleractinia of the Caribbean Sea and adjacent waters. In Hummelinck, P.W. & L. J. Van der Steen (eds), Studies of the Fauna of Curacao and other Caribbean Islands 180, 341 pp.Google Scholar
  4. Child, C. A., 1998. Nymphon torulum, new species and other Pycnogonida associated with the coral Oculina varicosa on the east coast of Florida. Bull. mar. Sci. 63: 595–604.Google Scholar
  5. Emery, K. O. & E. Uchupi, 1972. Western North Atlantic Ocean: topography, rocks, structure, water, life, and sediments. Mem. 17, Am. Ass. petrol. Geol., 532 pp.Google Scholar
  6. Fosså, J. H., P. B. Mortensen & D. M. Furevik, 2000a. The deep water coral Lophelia pertusa in Norwegian waters; distribution and fishery impacts. First Int. Symp. Deep Sea Corals: 25.Google Scholar
  7. Fosså, J. H., P. B. Mortensen & D. M. Furevik, 2000b. Lopheliakorallrev langs Nordskekysten forekomst og tilstand. Institute of Marine Research, Bergen, Fisken og Havet Nr. 2: 94 pp.Google Scholar
  8. Freiwald, A. & J. Schönfeld, 1996. Substrate pitting and boring pattern of Hyrrokkin sarcophaga Cedhagen, 1994 (Foraminifera) in a modern deep-water coral reef mound. Mar. Micropaleon. 28: 199–207.Google Scholar
  9. Freiwald, A., R. Henrich & J. Pätzold, 1997. Anatomy of a deep-water coral reef mound from Stjernsund, west Finnmark, northern Norway. Soc. sedim. Geol., SEPM spec. Pub. 56: 141–161.Google Scholar
  10. Freiwald, A., J. B. Wilson & R. Henrich, 1999. Grounding Pleistocene icebergs shape recent deep-water coral reefs. Sedim. Geol. 125: 1–8.Google Scholar
  11. Griffin, S. & E. R. Druffel, 1989. Sources of carbon to deep-sea corals. Radiocarbon 31: 533–543.Google Scholar
  12. Hoskin, C. M., J. C. Geier & J. K. Reed, 1983. Sediment produced from abrasion of the branching stony coral Oculina varicosa. J. sedim. Petrol. 53: 779–786.Google Scholar
  13. Hoskin, C. M., J. K. Reed & D. H. Mook, 1986. Production and off-bank transport of carbonate sediment, Black Rock, southwest Little Bahama Bank. Mar. Geol. 73: 125–144.Google Scholar
  14. Hoskin, C. M., J. K. Reed & D. H. Mook, 1987. Sediments from a living shelf-edge reef and adjacent area off central eastern Florida. In Maurrasse, F. J. M. (ed.), Proc. Symp. South Florida Geol., Miami geol. Soc. Mem. 3: 42–57.Google Scholar
  15. Jensen, A. & R. Frederiksen, 1992. The fauna associated with the bank-forming deepwater coral Lophelia pertusa (scleractinia) on the Faroe shelf. Sarsia 77: 53–69.Google Scholar
  16. Jones, J. B., 1992. Environmenal impact of trawling on the seabed: a review. New Zeal. J. Mar. Freshwat. Res. 26: 59–67.Google Scholar
  17. Koenig, C. C., F. C. Coleman, C. B. Grimes, G. R. Fitzhugh, K. M. Scanlon, C. T. Gledhill & M. Grace, 2000. Protection of fish spawning habitat for the conservation of warm-temperate reef-fish fisheries of shelf-edge reefs of Florida. Bull. mar. Sci. 66: 593–616.Google Scholar
  18. Koslow, J. A., G. W. Boehlert, J. D. Gordon, R. L. Haedrich, P. Lorance & N. Parin, 2000. Continetal slope and deep-sea fisheries: implications for a fragile ecosystem. ICES J. mar. Sci. 57: 548–557.Google Scholar
  19. Krutschinna, J. & A. Freiwald, 1998. Microendolithic succession along live to dead Lophelia pertusa (L.) skeletons from an aphotic coral reef. Proc. 2nd Int. Bioerosion Workshop: 43.Google Scholar
  20. Ludwick, J. C. & W. R. Walton, 1957. Shelf-edge, calcareous prominences in northeastern Gulf of Mexico. Bull. am. Ass. petrol. Geol. 41: 2054–2101.Google Scholar
  21. Messing, C. G., A. C. Neumann & J. C. Lang, 1990. Biozonation of deep-water lithoherms and associated hardgrounds in the northeastern straits of Florida. Palaios 5: 15–33.Google Scholar
  22. Mikkelsen, N., H. Erlenkeuser, J. S. Killingley & W. H. Berger, 1982. Norwegian corals: radiocarbon and stable isotopes in Lophelia pertusa. Boreas 11: 163–171.Google Scholar
  23. Milliman, J. D., F. T. Manheim, R. M. Pratt & E. F. Zarudzki, 1967. ALVIN dives on the continental margin off the southeastern United States, 2–13 July, 1967. Tech. Rep., Woods Hole Oceanographic Institution 67–80: 48 pp.Google Scholar
  24. Moore, D. R. & H. R. Bullis, Jr., 1960. A deep-water coral reef in the Gulf of Mexico. Bull. mar. Sci. Gulf Carib. 10: 125–128.Google Scholar
  25. Mortensen, P. B. & H. T. Rapp, 1998. Oxygen and carbon isotope ratios related to growth line patterns in skeletons of Lophelia pertusa (L.) (Anthozoa, Scleractinia): implications for determination of linear extension rates. Sarsia 83: 433–446.Google Scholar
  26. Mortensen, P. B., M. Hovland, T. Brattegard & R. Farestveit, 1995. Deep-water bioherms of the scleractinian coral Lophelia pertusa (L.) at 64°N on the Norwegian shelf: structure and associated megafauna. Sarsia 80: 145–158.Google Scholar
  27. Mullins, H. T. &A. C. Neumann, 1979. Deep carbonate bank margin structure and sedimentation in the northern Bahamas. Soc. econom. Paleontol. Mineral. spec. Pub. 27: 165–192.Google Scholar
  28. Mullins, H. T., C R. Newton, K. C. Heath & H. M. Van Buren, 1981. Modern deep-water coral mounds north of Little Bahama Bank: criteria for the recognition of deep-water coral bioherms in the rock record. J. sedim. Petrol. 51: 999–1013.Google Scholar
  29. National Oceanic and Atmospheric Administration, 1982. Fishery Management Plan for Coral and Coral Reefs of the Gulf of Mexico and South Atlantic. Gulf of Mexico and South Atlantic Fishery Management Councils, Tampa, Florida, 342 pp.Google Scholar
  30. Neumann, A. C. & M. M. Ball, 1970. Submersible observations in the Straits of Florida: geology and bottom currents. Geol. Soc. am. Bull. 81: 2861–2874.Google Scholar
  31. Neumann, A. C., G. H. Kofoed & G. H. Keller, 1977. Lithoherms in the Straits of Florida. Geology 5: 4–10.Google Scholar
  32. Newton, C. R., H. T. Mullins, A. F. Gardulski, A. C. Hine & z G. R. Dix, 1987. Coral mounds on the west Florida slope: unanswered questions regarding the development of deep-water banks. Palaios 2: 359–367.Google Scholar
  33. Paull, C. K., A. C. Neumann, B. A. am Ende, W. Ussler & N. M. Rodriguez, 2000. Lithoherms on the Florida Hatteras Slope. Mar. Geol. 136: 83–101.Google Scholar
  34. Reed, J. K., 1980. Distribution and structure of deep-water Oculina varicosa coral reefs off central eastern Florida. Bull. mar. Sci. 30: 667–677.Google Scholar
  35. Reed, J. K., 1981. In situ growth rates of the scleractinian coral Oculina varicosa occurring with zooxanthellae on 6-m reefs and without on 80-m banks. In Dogma, I. J. Jr. (ed.), Proc. 4th Int. Coral Reef Symp. 2: 201–206.Google Scholar
  36. Reed, J. K., 1983. Nearshore and shelf-edge Oculina coral reefs: the effects of upwelling on coral growth and on the associated faunal communities. NOAA Symp. Ser. Undersea Res. 1: 119–124.Google Scholar
  37. Reed, J. K., 1992. Submersible studies of deep-water Oculina and Lophelia coral banks off southeastern U.S.A. Proc. Am. Acad. Underwater Sci. 12th Ann. Scien. Diving Symp.: 143–151.Google Scholar
  38. Reed, J. K., 1998. Bioerosion and sediment production on Florida's deep-water Oculina coral banks. Proc. 2nd Int. Bioerosion Workshop: 54.Google Scholar
  39. Reed, J. K. & C. M. Hoskin, 1987. Biological and geological processes at the shelf edge investigated with submersibles. NOAA Symp. Ser. Undersea Res. 2: 191–199.Google Scholar
  40. Reed, J. K. & P. M. Mikkelsen, 1987. The molluscan community associated with the scleractinian coral Oculina varicose. Bull. mar. Sci. 40: 99–131.Google Scholar
  41. Reed, J. K., R. H. Gore, L. E. Scotto & K. A. Wilson, 1982. Community composition, structure, areal and trophic relationships of decapods associated with shallow-and deep-water Oculina varicosa coral reefs. Bull. mar. Sci. 32: 761–786.Google Scholar
  42. Richer de Forges, B., J. A. Koslow & G. C. Poore, 2000. Diversity and endemism of the benthic seamount fauna in the southwest Pacific. Nature 405: 944–947.Google Scholar
  43. Rogers, A. D., 1999. The biology of Lophelia pertusa (Linnaeus 1758) and other deep-water reef-forming corals and impacts from human activities. Int. Rev. Hydrobiol. 84: 315–406.Google Scholar
  44. Smith, F. G., 1971. Atlantic Reef Corals. University of Miami Press, Coral Gables, Florida, 164 pp.Google Scholar
  45. Squires, D. F., 1964. Fossil coral thickets in Wairarapa, New Zealand. J. Paleontol. 38: 904–915.Google Scholar
  46. Stetson, T. R., D. F. Squires & R. M. Pratt, 1962. Coral banks occurring in deep water on the Blake Plateau. Am. Mus. Nov. 2114: 1–39.Google Scholar
  47. Teichert, C., 1958. Cold-and deep-water coral banks. Bull. am. Ass. petrol. Geol. 42: 1064–1082.Google Scholar
  48. Thompson, M. J. & L. E. Gulliland, 1980. Topographic mapping of shelf edge prominences off southeastern Florida. Southeastern Geol. 21: 155–164.Google Scholar
  49. Tietze, R. C. & A. M. Clark, 1986. Remotely operated tools for undersea vehicles. Current practices and new technology in ocean engineering. Proc. 9th Int. Energy Sources Tech. Conf. & Exhibits, Am. Soc. mech. Eng., New Orleans, 11: 219–233.Google Scholar
  50. Uchupi, E., 1968. Atlantic continental shelf and slope of the United States–Physiography. Geol. Survey prof. Pap. 529-C: 1–30.Google Scholar
  51. Van Dolah, R. F., P. H. Wendt & N. Nicholson, 1987. Effects of a research trawl on a hard-bottom assemblage of sponges and corals. Fisheries Res. 5: 39–64.Google Scholar
  52. Verrill, A. E., 1902. Papers on corals. Trans. Conn. Acad. Arts Sci. 11: 63–266.Google Scholar
  53. Wilson, J. B., 1979a. The distribution of the coral Lophelia pertusa (L) [L. prolifera (Pallas)] in the northeast Atlantic. J. mar. biol. Ass. U.K. 59: 149–164.Google Scholar
  54. Wilson, J. B., 1979b. ‘Patch’ development of the deep-water coral Lophelia pertusa (L.) on Rockall Bank. J. mar. biol. Ass. U.K. 59: 165–177.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • John K. Reed
    • 1
  1. 1.Division of Biomedical Marine ResearchHarbor Branch Oceanographic InstitutionFort PierceU.S.A.

Personalised recommendations