Nonlinear Dynamics

, Volume 29, Issue 1–4, pp 191–200 | Cite as

Analytical Stability Bound for a Class of Delayed Fractional-Order Dynamic Systems

  • YangQuan Chen
  • Kevin L. Moore
Article

Abstract

Delayed Linear Time-Invariant (LTI) fractional-order dynamic systems areconsidered. The analytical stability bound is obtained by using Lambertfunction. Two examples are presented to illustrate the obtainedanalytical results.

delay fractional-order dynamic systems fractional-order integrator fractional-order differentiator stability bound analytical solutions Lambert function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gorecki, H., Fuksa, S., Grabowski, P., and Korytowski, A., Analysis and Synthesis of Time Delay Systems, Wiley/PWN-Polish Scientific Publishers, New York/Warsaw, 1989.Google Scholar
  2. 2.
    Marshall, J. E., Gorecki, H., Walton, K., and Korytowski, A., Time Delay Systems, Stability and Performance Criteria with Applications, Ellis Horwood, West Sussex, England, 1992.Google Scholar
  3. 3.
    Bellman, R. E. and Cooke, K. L., Differential-Difference Equations, Academic Press, New York, 1963.Google Scholar
  4. 4.
    Smith, O. J. M., 'A controller to overcome dead time', Instrumentation, Systems and Automation (ISA) Society Journal 6, 1959, 28–33.Google Scholar
  5. 5.
    Marshall, J. E., Control Time-Delay Systems, Control Engineering Series, Vol. 10, IEE, London, 1979.Google Scholar
  6. 6.
    Abdelrahman, M., Moore, K. L., and Naidu, D. S., 'Generalized Smith predictor for robust control of nuclear reactors with time delays', in Proceedings of the American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Control and Human Machine Interface Technologies, Pittsburgh, PA, 1996, pp. 1–6.Google Scholar
  7. 7.
    Moore, K. L., Iterative Learning Control for Deterministic Systems, Advances in Industrial Control, Springer-Verlag, Berlin, 1993.Google Scholar
  8. 8.
    Chen, Y. and Wen, C., Iterative Learning Control: Convergence, Robustness and Applications, Lecture Notes Series on Control and Information Science, Vol. 248, Springer-Verlag, Berlin, 1999.Google Scholar
  9. 9.
    Lambert, J. H., 'Observationes varies inmathesin puram', Acta Helvetica, Physico-Mathematico-Anatomico-Botanico-Medica 3, 1758, 128–168.Google Scholar
  10. 10.
    Euler, L., 'Deformulis exponentialibus replicatis', Leonhardi Euleri Opera Omnia, Series 1, Opera Mathematica 15(1927), 1777, 268–297.Google Scholar
  11. 11.
    Euler, L., 'De serie Lambertina plurimistique eius insignibus proprietatibus', Leonhardi Euleri Opera Omnia, Series 1, Opera Mathematica 6(1921), 1779, 350–369.Google Scholar
  12. 12.
    Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J., and Knuth, D. E., 'On the Lambert W function', Advances in Computational Mathematics 5, 1996, 329–359.Google Scholar
  13. 13.
    Corless, R. M., Gonnet, G. H., Hare, D. E. G., and Jeffrey, D. J., 'Lambert's W function in Maple', Maple Technical Newsletter 9, 1993, 12–22.Google Scholar
  14. 14.
    Corless, R. M., Jeffrey, D. J., and Knuth, D. E., 'A sequence of series for the Lambert W function', in Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC'97), Maui, U.S.A., W. W. Kuechlin (ed.), 1997, pp. 197–204.Google Scholar
  15. 15.
    Valluri, S. R., Jeffrey, D. J., and Corless, R. M., 'Some applications of the Lambert's W function to physics', Canadian Journal of Physics 78, 2000, 823–831.Google Scholar
  16. 16.
    Wright, E. M., 'The linear difference-differential equation with constant coefficients', Proceedings of the Royal Society of Edinburgh 62A, 1949, 387–393.Google Scholar
  17. 17.
    Jeffrey, D. J., Hare, D. E. G., and Corless, R. M., 'Unwinding the branches of the Lambert W function', Mathematics Scientist 21, 1996, 1–7.Google Scholar
  18. 18.
    Asl, F. M. and Ulsoy, A. G., 'Analytical solution of a system of homogeneous delay differential equations via the Lambert function', in Proceedings of the American Control Conference, Chicago, IL, June, 2000, pp. 2496–2500.Google Scholar
  19. 19.
    Chen, Y. and Moore, K. L., 'Analytical stability bound for delayed second order systems with repeating poles using Lambert function w', Automatica 38(5), 2002, 891–895.Google Scholar
  20. 20.
    Kalmár-Nagy, T., Stépán, G., and Moon, F. C., 'Subcritical Hopf bifurcation in the delay equation model for machine tool vibrations', Nonlinear Dynamics 26, 2001, 121–142.Google Scholar
  21. 21.
    Torvik, P. J. and Bagley, R. L., 'On the appearance of the fractional derivative in the behavior of real materials', Transactions of the American Society of Mechanical Engineers 51, 1984, 294–298.Google Scholar
  22. 22.
    Podlubny, I., Dorčák, L., and Misanek, J., 'Application of fractional-order derivatives to calculation of heat load intensity change in blast furnace walls', Transactions of Technical University of Kosice 5(5), 1995, 137–144.Google Scholar
  23. 23.
    Manabe, S., 'The non-integer integral and its application to control systems', Journal of Institute of Electrical Engineers of Japan 80(860), 1960, 589–597.Google Scholar
  24. 24.
    Axtell, M. and Bise, E. M., 'Fractional calculus applications in control systems', in Proceedings of the IEEE 1990 National Aerospace and Electronics Conference, New York, IEEE, New York, 1990, pp. 563–566.Google Scholar
  25. 25.
    Oustaloup, A., La Dérivation non Entière, Hermès, Paris, 1995.Google Scholar
  26. 26.
    Dorčák, L., 'Numerical models for simulation the fractional-order control systems', in UEF-04–94, The Academy of Science, Institute of Experimental Physics, Kosice, Slovak Republic, 1994, pp. 1–12.Google Scholar
  27. 27.
    Matignon, D., 'Stability result on fractional differential equations with applications to control processing', in IMACS-SMC Proceedings, Lille, France, 1996, pp. 963–968.Google Scholar
  28. 28.
    Oldham, K. B. and Spanier, J., The Fractional Calculus, Academic Press, New York, 1974.Google Scholar
  29. 29.
    Podlubny, I., 'The Laplace transform method for linear differential equations of the fractional order', in Proceedings of the 9th International BERG Conference, Kosice, Slovak Republic, 1997, p. 119 [in Slovak].Google Scholar
  30. 30.
    Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, CA, 1999. 200 Y. Q. Chen and K. L. Moore Google Scholar
  31. 31.
    Woon, S. C., 'Analytic continuation of operators-operators acting complex s-time. Applications: From number theory and group theory to quantum field and string theories', Reviews in Mathematical Physics 11(4), 1999, 463–501.Google Scholar
  32. 32.
    Zavada, P., 'Operator of fractional derivative in the complex plane', Communications in Mathematical Physics 192(2), 1998, 261–285.Google Scholar
  33. 33.
    Lurie, B. J., 'Three-parameter tunable tilt-integral-derivative (TID) controller', US Patent US5371670, 1994.Google Scholar
  34. 34.
    Petráš, I., Dorčák, L., and Kostial, I., 'Control quality enhancement by fractional order controllers', Acta Montanistica Slovaca 2, 1998, 143–148.Google Scholar
  35. 35.
    Podlubny, I., 'Fractional-order systems and fractional-order controllers', in UEF-03–94, The Academy of Sciences Institute of Experimental Physics, Kosice, Slovak Republic, 1994.Google Scholar
  36. 36.
    Raynaud, H.-F. and Zergainoh, A., 'State-space representation for fractional order controllers', Automatica 36, 2000, 1017–1021.Google Scholar
  37. 37.
    Oustaloup, A., Melchoir, P., Lanusse, P., Cois, C., and Dancla, F., 'The CRONE toolbox for Matlab', in Proceedings of the 11th IEEE International Symposium on Computer Aided Control System Design-CACSD, Anchorage, AK, U.S.A., IEEE, New York, 2000, pp. 190–195.Google Scholar
  38. 38.
    Chen, Y. and Moore, K. L., 'Discretization schemes for fractional order differentiators and integrators', IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49(3), 2002, 363–367.Google Scholar
  39. 39.
    Chen, Y. and Moore, K. L., 'Analytical stability bound for a class of delayed fractional-order dynamic systems', in Proceedings of the IEEE Conference on Decision and Control (CDC'01), Orlando, FL, IEEE, New York, 2001, pp. 1421–1426.Google Scholar
  40. 40.
    Samko, S. G., Kilbas, A. A., and Marichev, O. I., Fractional Integrals and Derivatives and Some of Their Applications, Nauka i technika, Minsk, 1987.Google Scholar
  41. 41.
    Miller, K. S. and Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.Google Scholar
  42. 42.
    Petráš, I. and Dorčák, L., 'The frequency method for stability investigation of fractional control systems', Stability and Control: Theory and Applications (SACTA) Journal 2(1–2), 1999, 75–85.Google Scholar
  43. 43.
    Petráš, I., Dorčák, L., O'Leary, P., Vinagre, B. M., and Podlubny, I., 'The modelling and analysis of fractional-order control systems in frequency domain', in Proceedings of the International Carpathian Control Conference (ICCC'2000), High Tatras, Slovak Republic, May 23–26, 2000, pp. 261–264.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • YangQuan Chen
    • 1
  • Kevin L. Moore
    • 1
  1. 1.Center for Self-Organizing and Intelligent Systems (CSOIS), Department of Electrical and Computer EngineeringUtah State UniversityLoganU.S.A

Personalised recommendations