Journal of Heuristics

, Volume 8, Issue 5, pp 495–502 | Cite as

Hybrid Genetic Algorithm for DNA Sequencing with Errors

  • Jacek Błażewicz
  • Marta Kasprzak
  • Wojciech Kuroczycki


In the paper, a new hybrid genetic algorithm solving the DNA sequencing problem with negative and positive errors is presented. The algorithm has as its input a set of oligonucleotides coming from a hybridization experiment. The aim is to reconstruct an original DNA sequence of a known length on the basis of this set. No additional information about the oligonucleotides nor about the errors is assumed. Despite that, the algorithm returns for computationally hard instances surprisingly good results, of a very high similarity to original sequences.

genetic algorithms DNA sequencing by hybridization negative and positive errors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bains, W. and G.C. Smith. (1988). “A Novel Method for Nucleic Acid Sequence Determination.” Journal of Theoretical Biology 135, 303–307.Google Scholar
  2. Błażewicz, J., J. Kaczmarek, M. Kasprzak, W.T. Markiewicz, and J. Węglarz. (1997). “Sequential and Parallel Algorithms for DNA Sequencing.” Computer Applications in the Biosciences 13, 151–158.Google Scholar
  3. Błażewicz, J., P. Formanowicz, M. Kasprzak, W.T. Markiewicz, and J. Węglarz. (1999a). “DNA Sequencing with Positive and Negative Errors.” Journal of Computational Biology 6, 113–123.Google Scholar
  4. Błażewicz, J., P. Formanowicz, F. Glover, M. Kasprzak, and J. Węglarz. (1999b). “An Improved Tabu Search Algorithm for DNA Sequencing with Errors.” In Proceedings of the III Metaheuristics International Conference MIC'99, pp. 69–75.Google Scholar
  5. Błażewicz, J., P. Formanowicz, M. Kasprzak, W.T. Markiewicz, and J. Węglarz. (2000). “Tabu Search for DNA Sequencing with False Negatives and False Positives.” European Journal of Operational Research 125, 257–265.Google Scholar
  6. Błażewicz, J. and M. Kasprzak. (2002). “Complexity of DNA Sequencing by Hybridization.” Theoretical Computer Science, to appear.Google Scholar
  7. Caviani Pease, A., D. Solas, E.J. Sullivan, M.T. Cronin, C.P. Holmes, and S.P.A. Fodor. (1994). “Light-Generated Oligonucleotide Arrays for Rapid DNA Sequence Analysis.” In Proceedings of the National Academy of Sciences of the USA 91, pp. 5022–5026.Google Scholar
  8. Drmanac, R., I. Labat, I. Brukner, and R. Crkvenjakov. (1989). “Sequencing of Megabase Plus DNA by Hybridization: Theory of the Method.” Genomics 4, 114–128.Google Scholar
  9. Drmanac, R., I. Labat, and R. Crkvenjakov. (1991). “An Algorithm for the DNA Sequence Generation from k-tupleWord Contents of the Minimal Number of Random Fragments.” Journal of Biomolecular Structure and Dynamics 8, 1085–1102.Google Scholar
  10. Fodor, S.P.A., J.L. Read, M.C. Pirrung, L. Stryer, A.T. Lu, and D. Solas. (1991). “Light-Directed, Spatially Addressable Parallel Chemical Synthesis.” Science 251, 767–773.Google Scholar
  11. Glover, F. (1977). “Heuristics for Integer Programming Using Surrogate Constraints.” Decision Sciences 8, 156–166.Google Scholar
  12. Glover, F. and M. Laguna. (1977). Tabu Search. Norwell: Kluwer Academic Publishers.Google Scholar
  13. Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Reading: Addison-Wesley.Google Scholar
  14. Grefenstette, J.J., R. Gopal, B.J. Rosmaita, and D. Van Gucht. (1985). “Genetic Algorithms for the Traveling Salesman Problem.” In Proceedings of International Conference on Genetic Algorithms and Their Applications, pp. 160–168.Google Scholar
  15. Hagstrom, J.N., R. Hagstrom, R. Overbeek, M. Price, and L. Schrage. (1994). “Maximum Likelihood Genetic Sequence Reconstruction from Oligo Content.” Networks 24, 297–302.Google Scholar
  16. Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press.Google Scholar
  17. Lipshutz, R.J. (1993). “Likelihood DNA Sequencing by Hybridization.” Journal of Biomolecular Structure and Dynamics 11, 637–653.Google Scholar
  18. Lysov, Yu. P., V.L. Florentiev, A.A. Khorlin, K.R. Khrapko, V.V. Shik, and A.D. Mirzabekov. (1988). “Determination of the Nucleotide Sequence of DNA Using Hybridization with Oligonucleotides. A New Method.” Doklady Akademii Nauk SSSR 303, 1508–1511.Google Scholar
  19. Markiewicz, W.T., K. Andrych-Rożek, M. Markiewicz, A. Żebrowska, and A. Astriab. (1994). “Synthesis of Oligonucleotides Permanently Linked with Solid Supports for Use as Synthetic Oligonucleotide Combinatorial Libraries. Innovations in Solid Phase Synthesis.” In R. Epton (ed.), Biological and Biomedical Applications. Birmingham: Mayflower Worldwide, pp. 339–346.Google Scholar
  20. Pevzner, P.A. (1989). “l-tuple DNA Sequencing: Computer Analysis.” Journal of Biomolecular Structure and Dynamics 7, 63–73.Google Scholar
  21. Southern, E.M. (1988). United Kingdom Patent Application GB8810400.Google Scholar
  22. Waterman, M.S. (1995). Introduction to Computational Biology. Maps, Sequences and Genomes. London: Chapman &; Hall.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Jacek Błażewicz
    • 1
    • 2
  • Marta Kasprzak
    • 1
    • 2
  • Wojciech Kuroczycki
    • 1
  1. 1.Institute of Computing SciencePoznań University of TechnologyPoland;
  2. 2.Institute of Bioorganic ChemistryPolish Academy of SciencesPoznańPoland

Personalised recommendations