Hydrobiologia

, Volume 471, Issue 1–3, pp 43–55

Deep-water Oculina coral reefs of Florida: biology, impacts, and management

  • John K. Reed
Article

Abstract

Deep-water Oculina coral reefs, which are similar in structure and development to deep-water Lophelia reefs, stretch over 167 km (90 nmi) at depths of 70–100 m along the eastern Florida shelf of the United States. These consist of numerous pinnacles and ridges, 3–35 m in height. Coral growth rates average 16.1 mm yr−1 and biodiversity is very rich. Extensive areas of Oculina rubble may be due to human impacts (e.g. fish trawling and dredging, anchoring, bottom longlines) and natural processes such as bioerosion and episodic die-off. Early in the 1970s, the reefs were teeming with fish. By the early 1990s, both commercial and recreational fisheries, including scallop, shrimp, grouper, snapper and amberjack, had taken a toll on the reefs and especially on populations of grouper and snapper. A 315 km2 (92 nmi2) area was designated the Oculina Habitat of Particular Concern (HAPC) in 1984, prohibiting trawling, dredging, bottom longlines and anchoring, and legislation was enacted in 2000 for expansion of the Oculina HAPC to 1029 km2 (300 nmi2). The United States Coast Guard has been charged with surveillance and enforcement of the ban on bottom fishing and trawling. The primary difficulties in protecting these reefs and other deep-water Marine Protected Areas are their remoteness and time required to engage an enforcement vessel. Education regarding the nature and importance of these rich resources is important for better self regulation and surveillance by the fishing community. Only by bringing deep-water reefs to the public, the fishing community, and enforcement agencies, through video, photos, and education will there be better understanding and acceptance for the need of protection for these unseen resources. This paper reviews the current knowledge on the deep-water Oculina reefs, including the biology, geology, human impacts, and history of conservation and management.

Oculina deep-water coral reef management biology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avent, R. M., M. E. King & R. H Gore, 1977. Topographic and faunal studies of shelf-edge prominences off the central eastern Florida coast. Int. Rev. ges. Hydrobiol. 62: 185–208.Google Scholar
  2. Bak, R. P., 1978. Lethal and sublethal effects of dredging on reef corals. Mar. Poll. Bull. 9: 14–16.Google Scholar
  3. Brooke, S. D., 1998. Reproduction and larval biology of the ivory tree coral Oculina varicose. Am. Zool. 38: 100a.Google Scholar
  4. Child, C. A., 1998. Nymphon torulum, new species and other Pycnogonida associated with the coral Oculina varicosa on the east coast of Florida. Bull. mar. Sci. 63: 595–604.Google Scholar
  5. Cremer, P., 1986. U-boat Commander. Berkley Books, New York: 244 pp.Google Scholar
  6. Dodge, R. E., R. C. Aller & J. Thompson, 1974. Coral growth related to resuspension of bottom sediments. Nature 247: 574–577.Google Scholar
  7. Emery, K. O. & E. Uchupi, 1972. Western North Atlantic Ocean: topography, rocks, structure, water, life, and sediments. Mem. 17, Am. Ass. petrol. Geol.: 532 pp.Google Scholar
  8. Fosså, J. H., P. B. Mortensen & D. M. Furevik, 2000a. The deep water coral Lophelia pertusa in Norwegian waters; distribution and fishery impacts. First Internat. Symp. Deep Sea Corals: 25.Google Scholar
  9. Fosså, J. H., P. B. Mortensen & D. M Furevik, 2000b. Lophelia-korallrev langs Nordskekysten forekomst og tilstand. Institute of Marine Research, Bergen, Fisken og Havet Nr. 2: 94 pp.Google Scholar
  10. Freiwald, A. & J. Schönfeld, 1996. Substrate pitting and boring pattern of Hyrrokkin sarcophaga Cedhagen, 1994 (Foraminifera) in a modern deep-water coral reef mound. Mar. Micropaleon. 28: 199–207.Google Scholar
  11. Freiwald, A., R. Henrich & J. Pätzold, 1997. Anatomy of a deep-water coral reef mound from Stjernsund, west Finnmark, northern Norway. Soc. sedim. Geol., SEPM spec. Pub. 56: 141–162.Google Scholar
  12. Freiwald, A., J. B Wilson & R. Henrich, 1999. Grounding Pleistocene icebergs shape recent deep-water coral reefs. Sedim. Geol. 125: 1–8.Google Scholar
  13. Gilmore, R. G. & R. S. Jones, 1992. Color variation and associated behavior in the epinepheline groupers, Mycteroperca microlepis (Goode and Bean) and M. phenax Jordan and Swain. Bull. mar. Sci. 51: 83–103.Google Scholar
  14. Glynn, P. W., 1996. Bioerosion and coral reef growth: A dynamic balance. In Birkland, C. (ed.), Life and Death of Coral Reefs. Chapman & Hall New York: 68–95.Google Scholar
  15. Hoskin, C. M., J. C. Geier & J. K. Reed, 1983. Sediment produced from abrasion of the branching stony coral Oculina varicose. J. Sedim. Petrol. 53: 779–786.Google Scholar
  16. Hoskin, C. M., J. K. Reed & D. H. Mook, 1987. Sediments from a living shelf-edge reef and adjacent area off central eastern Florida. In Maurrasse, F. J. M. (ed.), Proc. Symp. South Florida Geol., Miami geol. Soc. Mem. 3: 42–57.Google Scholar
  17. Hubbard, J. A. & Y. P. Pocock, 1972. Sediment rejection by recent scleractinian corals: a key to palaeo-environmental reconstruction. Geol. Rund. 61: 598–626.Google Scholar
  18. Jensen, A. & R. Frederiksen, 1992. The fauna associated with the bank-forming deepwater coral Lophelia pertusa (scleractinia) on the Faroe shelf. Sarsia 77: 53–69.Google Scholar
  19. Jones, J. B., 1992. Environmenal impact of trawling on the seabed: a review. New Zeal. J. mar. Freshwat. Res. 26: 59–67.Google Scholar
  20. Koenig, C. C., F. C. Coleman, C. B. Grimes, G. R. Fitzhugh, K. M. Scanlon, C. T. Gledhill & M. Grace, 2000. Protection of fish spawning habitat for the conservation of warm-temperate reef-fish fisheries of shelf-edge reefs of Florida. Bull. mar. Sci. 66: 593–616.Google Scholar
  21. Koslow, J. A., G. W. Boehlert, J. D. Gordon, R. L. Haedrich, P. Lorance & N. Parin, 2000. Continetal slope and deep-sea fisheries: implications for a fragile ecosystem. ICES J. mar. Sci. 57: 548–557.Google Scholar
  22. Krutschinna, J. & A. Freiwald, 1998. Microendolithic succession along live to dead Lophelia pertusa (L.) skeletons from an aphotic coral reef. Proc. 2nd Internat. Bioerosion Workshop: 43 pp.Google Scholar
  23. Ludwick, J. C. & W. R. Walton, 1957. Shelf-edge, calcareous prominences in northeastern Gulf of Mexico. Bull. am. Ass. petrol. Geol. 41: 2054–2101.Google Scholar
  24. Macintyre, I. G. & J. D. Milliman, 1970. Physiographic features on the outer shelf and upper continental slope, Atlantic continental margin, southeastern United States. Bull. am. geol. Soc. 81: 2577–2598.Google Scholar
  25. Miller, J. E. & D. L. Pawson, 1979. A new subspecies of Holothuria lentigenosa Marenzeller from the western Atlantic Ocean. Proc. biol. Soc. Wash. 91: 912–922.Google Scholar
  26. Milliman, J. D., F. T. Manheim, R. M. Pratt & E. F. Zarudzki, 1967. ALVIN dives on the continental margin off the southeastern United States, July 2–13, 1967. Tech. Rep., Woods Hole Oceanographic Institution 67-80: 1–48.Google Scholar
  27. Moore, D. R. & H. R. Bullis, Jr., 1960. A deep-water coral reef in the Gulf of Mexico. Bull. mar. Sci. Gulf Carib. 10: 125–128.Google Scholar
  28. Mortensen, P. B. & H. T. Rapp, 1998. Oxygen and carbon isotope ratios related to growth line patterns in skeletons of Lophelia pertusa (L.) (Anthozoa, Scleractinia): implications for determination of linear extension rates. Sarsia 83: 433–446.Google Scholar
  29. Mortensen, P. B., M. Hovland, T. Brattegard & R. Farestveit, 1995. Deep-water bioherms of the scleractinian coral Lophelia pertusa (L.) at 64° N on the Norwegian shelf: structure and associated megafauna. Sarsia 80: 145–158.Google Scholar
  30. National Oceanic and Atmospheric Administration, 1982. Fishery Management Plan for Coral and Coral Reefs of the Gulf of Mexico and South Atlantic. Gulf of Mexico and South Atlantic Fishery Management Councils, Tampa, Florida: 342 pp.Google Scholar
  31. National Oceanic and Atmospheric Administration, 1998. Oculina bank HAPC expanded northward. South Atlantic Update, The South Atlantic Fishery Management Council, Charleston, South Carolina: 18 pp.Google Scholar
  32. Neumann, A. C. & M. M. Ball, 1970. Submersible observations in the Straits of Florida: geology and bottom currents. Geol. Soc. am. Bull. 81: 2861–2874.Google Scholar
  33. Newton, C. R., H. T. Mullins, A. F. Gardulski, A. C. Hine & G. R. Dix, 1987. Coral mounds on the west Florida slope: unanswered questions regarding the development of deep-water banks. Palaios 2: 359–367.Google Scholar
  34. Reed, J. K., 1980. Distribution and structure of deep-water Oculina varicosa coral reefs off central eastern Florida. Bull. mar. Sci. 30: 667–677.Google Scholar
  35. Reed, J. K., 1981. In situ growth rates of the scleractinian coral Oculina varicosa occurring with zooxanthellae on 6-m reefs and without on 80-m banks. Proc. 4th Internat. Coral Reef Symp. 2: 201–206.Google Scholar
  36. Reed, J. K., 1983. Nearshore and shelf-edge Oculina coral reefs: the effects of upwelling on coral growth and on the associated faunal communities. National Oceanic Atmospheric Administration, Symp. Ser. Undersea Res. 1: 119–124.Google Scholar
  37. Reed, J. K., 1985. Shelf edge Oculina reefs. In Seaman, W., Jr. (ed.), Florida Aquatic Habitat and Fishery Resources. Florida Chapter of American Fisheries Society, Kissimmee, Florida: 466–468.Google Scholar
  38. Reed, J. K., 1998. Bioerosion and sediment production on Florida's deep-water Oculina coral banks. Proc. 2nd Internat. Bioerosion Workshop: 54–56.Google Scholar
  39. Reed, J. K. & R. G. Gilmore, 1981. Inshore occurrence and nuptial behavior of the roughtail stingray, Dasyatis centroura (Dasyatidae), on the continental shelf, east central Florida. Northeast Gulf Sci. 5: 1–4.Google Scholar
  40. Reed, J. K. & C. M. Hoskin, 1987. Biological and geological processes at the shelf edge investigated with submersibles. National Oceanic Atmospheric Administration, Symp. Ser. Undersea Res. 2: 191–199.Google Scholar
  41. Reed, J. K. & P. M. Mikkelsen, 1987. The molluscan community associated with the scleractinian coral Oculina varicose. Bull. mar. Sci 40: 99–131.Google Scholar
  42. Reed, J. K., R. H. Gore, L. E. Scotto & K. A. Wilson, 1982. Community composition, structure, areal and trophic relationships of decapods associated with shallow-and deep-water Oculina varicosa coral reefs. Bull. mar. Sci. 32: 761–786.Google Scholar
  43. Richer de Forges, B.,J. A Koslow & G. C. Poore, 2000. Diversity and endemism of the benthic seamount fauna in the southwest Pacific. Nature 405: 944–947.Google Scholar
  44. Richman, S., Y. Loya & L. Slobodkin, 1975. The rate of mucus production by corals and its assimilation by the coral reef copepod Acartia negligens. Limnol. Oceanogr. 20: 918–923.Google Scholar
  45. Rogers, A. D., 1999. The biology of Lophelia pertusa (Linnaeus 1758) and other deep-water reef-forming corals and impacts from human activities. Int. Rev. Hydrobiol. 84: 315–406.Google Scholar
  46. Rogers, C. S., 1990.Responses of coral reefs and reef organisms to sedimentation. Mar. Ecol. Prog. Ser. 62: 185–202.Google Scholar
  47. Schmuck, E. A., P. C. Valentine & N. W. Driscoll, 1995. Examples of trawl and dredge marks from side-scan sonar records collected from Stellwagen Bank, Georges Bank, and Block Island Sound, and their geomorphic and sedimentary significance. N.E. Section geol. Soc. Am. 1995, abstract.Google Scholar
  48. Smith, F. G. W., 1971. Atlantic Reef Corals. Univ. Miami Press, Coral Gables, Florida: 164 pp.Google Scholar
  49. Smith, N. P., 1981. An investigation of seasonal upwelling along the Atlantic coast of Florida. Proc. 12th Internat. Liege Colloque Ocean Hydrodynamics: 79–98.Google Scholar
  50. Stetson, T. R., D. F. Squires & R. M. Pratt, 1962. Coral banks occurring in deep water on the Blake Plateau. Am. Mus. Nov. 2114: 1–39.Google Scholar
  51. Teichert, C., 1958, Cold-and deep-water coral banks. Bull. am. Ass. petrol. Geol. 42: 1064–1082.Google Scholar
  52. Thompson, M. J. & L. E. Gulliland, 1980. Topographic mapping of shelf edge prominences off southeastern Florida. Southeastern Geol. 21: 155–164.Google Scholar
  53. Van Dolah, R. F., P. H. Wendt & N. Nicholson, 1987. Effects of a research trawl on a hard-bottom assemblage of sponges and corals. Fisheries Res. 5: 39–64.Google Scholar
  54. Verrill, A. E., 1902. Papers on corals. Trans. Conn. Acad. Arts Sci. 11: 63–266.Google Scholar
  55. Virden, W. T., T. L. Berggren, T. A. Niichel & T. L. Holcombe, 1996. Bathymetry of the shelf-edge banks, Florida east coast. National Oceanic and Atmospheric Administration, National Geophysical Data Center, National Marine Fisheries Service, Beaufort, North Carolina: 1.Google Scholar
  56. Wilson, J. B., 1979. The distribution of the coral Lophelia pertusa (L) [L. prolifera (Pallas)] in the northeast Atlantic. J. mar. biol. Ass. U.K. 59: 149–164.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • John K. Reed
    • 1
  1. 1.Division of Biomedical Marine ResearchHarbor Branch Oceanographic InstitutionFort PierceU.S.A.

Personalised recommendations