Foundations of Physics

, Volume 32, Issue 7, pp 1069–1090 | Cite as

Polarized Spacetime Foam

  • V. Dzhunushaliev


An approximate model of a spacetime foam is presented. It is supposed that in the spacetime foam each quantum handle is like to an electric dipole and therefore the spacetime foam is similar to a dielectric. If we neglect of linear sizes of the quantum handle then it can be described with an operator containing a Grassman number and either a scalar or a spinor field. For both fields the Lagrangian is presented. For the scalar field it is the dilaton gravity + electrodynamics and the dilaton field is a dielectric permeability. The spherically symmetric solution in this case give us the screening of a bare electric charge surrounded by a polarized spacetime foam and the energy of the electric field becomes finite one. In the case of the spinor field the spherically symmetric solution give us a ball of the polarized spacetime foam filled with the confined electric field. It is shown that the full energy of the electric field in the ball can be very big.

polarized spacetime foam minimalist wormhole approximate model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Wheeler, “On the nature of quantum geometrodynamics,” Ann. Phys. 2, 604 (1957).Google Scholar
  2. 2.
    V. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry: Methods and Applications (Nauka, Moscow, 1979).Google Scholar
  3. 3.
    L. Smolin, “Fermions and topology,” gr-qc/9404010.Google Scholar
  4. 4.
    L. J. Garay, “Quantum evolution in space-time foam,” Int. J. Mod. Phys. A 14, 4079 (1999).Google Scholar
  5. 5.
    S. Coleman, “Why there is nothing rather than something: A theory of the cosmological constant,” Nucl. Phys. B 310, 643 (1988).Google Scholar
  6. 6.
    S. W. Hawking, “The unpredictability of quantum gravity,” Commun. Math. Phys. 87, 395 (1982).Google Scholar
  7. 7.
    L. J. Garay, “Space-time foam as a quantum thermal bath,” Phys. Rev. Lett. 80, 2508 (1998).Google Scholar
  8. 8.
    L. J. Garay, “Thermal properties of space-time foam,” Phys. Rev. D 58, 124015 (1998).Google Scholar
  9. 9.
    L. Crane and L. Smolin, “Renormalizability of general relativity on a background of space-time foam,” Nucl. Phys. B 267, 714 (1986).Google Scholar
  10. 10.
    A. M. R. Magnon, “Primordial foam and absorption of infrared divergences in quantum gravity,” Class. Quantum Grav. 5, 299 (1988).Google Scholar
  11. 11.
    V. Dzhunushaliev, “Wormhole with quantum throat,” Grav. &; Cosmol. 7, 79 (2001), gr-qc/0005008; “An approximate model of the spacetime foam,” Int. J. Mod. Phys. D 11, 299 (2002).Google Scholar
  12. 12.
    V. Dzhunushaliev, “Multidimensional geometrical model of the renormalized electrical charge with splitting off the extra coordinates,” Mod. Phys. Lett. A 13, 2179 (1998).Google Scholar
  13. 13.
    V. Dzhunushaliev and D. Singleton, “Wormholes and flux tubes in 5D Kaluza-Klein theory,” Phys. Rev. D 59, 064018 (1999).Google Scholar
  14. 14.
    A. A. Kirillov, “Effects related to space-time foam in particle physics,” JETP 88, 1051 (1999).Google Scholar
  15. 15.
    K. Bronnikov, “Extra dimensions and possible space-time signature changes,” Int. J. Mod. Phys. D 4, 491 (1995); “On spherically symmetric solutions in d-dimensional dilaton gravity,” Grav. &;Cosmol. 1, 67 (1995).Google Scholar
  16. 16.
    V. Dzhunushaliev, “A geometrical interpretation of Grassmanian Coordinates,” hep-th/ 0104129, to be published in Gen. Relat. Grav.Google Scholar
  17. 17.
    R. Gregory and J. A. Harvey, “Black holes with a massive dilaton,” Phys. Rev. D 47, 2411 (1993).Google Scholar
  18. 18.
    R. Finkelstein, R. LeLevier, and M. Ruderman, “Nonlinear spinor fields,” Phys. Rev. 83, 326 (1951); R. Finkelstein, C. Fronsdal, and P. Kaus, “Nonlinear spinor field,” Phys. Rev. 103, 1571 (1956).Google Scholar
  19. 19.
    W. Heisenberg, “Zur Quantentheorie nichtrenormierbarer Wellengleichungen,” Z. Naturforsch. 9a, 292 (1954). W. Heisenberg, F. Kortel, and H. Mitter, “Zur Quantentheorie nichtlinear Wellengleichungen III,” Z. Naturforsch. 10a, 425 (1955). W. Heisenberg, “Erweiterungen des Hilbert-Raums in der Quantentheorie der Wellenfelder,” Z. Phys. 144, 1 (1956). P. Askoli and W. Heisenberg, “Zur Quantentheorie nichtlinear Wellengleichungen. IV Elektrodynamik,” Z. Naturforsch. 12a, 177 (1957). W. Heisenberg, “Lee model and quantization of non linear field equations,” Nucl. Phys. 4, 532 (1957). W. Heisenberg, “Quantum theory of fields and elementary particles,” Rev. Mod. Phys. 29, 269 (1957).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • V. Dzhunushaliev
    • 1
  1. 1.Department of Physics and Microelectronics Engineer.Kyrgyz-Russian Slavic UniversityBishkekKyrgyz Republic

Personalised recommendations