The Asymmetry of Organic Aerosol Fission and Prebiotic Chemistry

  • D. J. Donaldson
  • A. F. Tuck
  • V. Vaida
Article

Abstract

We examine the prebiotic applicability of our recent analysis of the fission of an atmospheric aerosol particle coated with an organic film. The fission is made possible by the free energy change upon compression of the exterior monolayer film on the parent particle, which overcomes the increase in surface area associated with the production of two spherical daughter particles. Asymmetric division into a larger and a smaller particle becomes possible following surfactant film collapse. The size of the airborne parent particle is determined by the balance between aerodynamics and gravity, while the ratio of the radii of the daughters is determined by the compression characteristics of the amphiphilic molecules comprising the parent film. For an Earth atmosphere of one bar surface pressure, the larger and smaller daughters have the sizes of a single-celled bacterium and of a virus respectively. Chemical differentiation between the daughters is possible.

aerosol fission bacteria prebiotic virus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, G. and Delbrück, M.: 1968, in A. Rich and N. Davidson (eds), Structural Chemistry and Molecular Biology, Freeman, pp. 198-215.Google Scholar
  2. Bertram, A. K., Ivanov, A. V., Hunter, M., Molina, L. T. and Molina, M. J.: 2001, The Reaction Probability of OH on Organic Surfaces of Tropospheric Interest, J. Phys. Chem. A 105, 9415–9421.Google Scholar
  3. Blanchard, D. C.: 1964, Sea-to-air Transport of Surface Active Material, Science 146, 396–397.Google Scholar
  4. Cody, G. D., Boctor, N. Z., Filley, T. R., Hazen, R. M., Scott, J. H., Sharma, A. and Yoder Jr., H. S.: 2000, Primordial Carbonylated Iron-sulfur Compounds and the Synthesis of Pyruvate, Science 289, 1337–1340.Google Scholar
  5. Cronin, J. R.: 1998, Clues from the Origin of the Solar System: Meteorites, in A. Brack (ed.), The Molecular Origins of Life, Cambridge University Press, Chapter 6, pp. 119-146.Google Scholar
  6. Deamer, D. W.: 1997, The First Living Systems: A Bioenergetic Perspective, Microbiol. Mol. Biol. Revs. 61, 239–261.Google Scholar
  7. Dietrich, C., Volovyk, Z. N., Levi, M., Thompson, N. L. and Jacobson, K.: 2001, Partitioning of Thy-1, GM1, and Cross-linked Phospholipid Analogs into Lipid Rafts Reconstituted in Supported Model Membrane Layers, Proc. Nat. Acad. Sci. 98, 10642–10647.Google Scholar
  8. Dobson, C. M., Ellison, G. B., Tuck, A. F. and Vaida, V.: 2000, Atmospheric Aerosols as Prebiotic Chemical Reactors, Proc. Nat. Acad. Sci. 97, 11864–11868.Google Scholar
  9. Donaldson, D. J., Tuck, A. F. and Vaida, V.: 2001, Spontaneous Fission of Atmospheric Aerosol Particles, Phys. Chem. Chem. Phys. 3, 5270–5273.Google Scholar
  10. Dyson, F. J.: 1985, Origins of Life, 1st ed., Cambridge University Press.Google Scholar
  11. Dyson, F. J.: 1999, Origins of Life, 2nd ed., Cambridge University Press.Google Scholar
  12. Ellison, G. B., Tuck, A. F. and Vaida, V.: 1999, Atmospheric Processing of Organic Aerosols, J. Geophys. Res. 104, 11633–11642.Google Scholar
  13. Gill, P. S., Graedel, T. E. and Weschler, C. G.: 1983, Organic Films on Atmospheric Aerosol Particles, Fog Droplets, Raindrops and Snowflakes, Rev. Geophys. 21, 903–920.Google Scholar
  14. Haselmann, C. and Laustriat, G.: 1973, Photochimie des Acides Amines Aromatiques en Solution-I. DL-phenylalanine, DL-tyrosine et L-dopa, Photochem. Photobiol. 17, 275–294.Google Scholar
  15. Huber, C. and Wächtershäuser, G.: 1998, Peptides by Activation of Amino Acids with CO on (Ni, Fe)S Surfaces: Implications for the Origin of Life, Science 281, 670–672.Google Scholar
  16. Lerman, L.: 1996, The Bubble-aerosol-droplet Cycle: A Prebiotic Geochemical Reactor, Orig. Life Evol. Biosph. 26, 369–370.Google Scholar
  17. Luisi, P. L., Giomini, M., Pileni, M. P. and Robinson, B. H.: 1988, Reverse Micelles as Hosts for Proteins and Small Molecules, Biochim. Biophys. Acta 947, 209–246.Google Scholar
  18. Luisi, P. L.: 1996, Self-reproduction of Micelles and Vesicles: Models for the Mechanisms of Life from the Perspective of Compartmented Chemistry, in I. Prigogine and S. A. Rice (eds), Advances in Chemical Physics, XCII, John Wiley & Sons, pp. 425-438.Google Scholar
  19. Mason, B. J.: 1954, Bursting of Air Bubbles at the Surface of Sea Water, Nature 174, 470–471.Google Scholar
  20. Middlebrook, A. M., Murphy, D.M. and Thomson, D. S.: 1998, Observations of Organic Material in Individual Marine Particles at Cape Grim during the First Aerosol Characterization Experiment (ACE-1), J. Geophys. Res. 103, 16475–16483.Google Scholar
  21. Morowitz, H. J.: 1992, Beginnings of Cellular Life, Yale University Press.Google Scholar
  22. Murphy, D. M., Thomson, D. S. and Mahoney, M. J.: 1998, In Situ Measurements of Organics, Meteoritic Material, Mercury and Other Elements in Aerosols at 5 to 19 Kilometers, Science 282, 1664–1669.Google Scholar
  23. Norris, V. and Raine, D. J.: 1998, A Fission-fusion Origin for Life, Orig. Life Evol. Biosph. 28, 523–537.Google Scholar
  24. Pruppacher, H. R. and Klett, J. D.: 1998, Microphysics of Clouds and Precipitation, 2nd ed., Reidel, pp. 216-286.Google Scholar
  25. Petrov, J. G., Pfohl, T. and Möhwald, H.: 1999, Ellipsometric Chain Length Dependence of Fatty Acid Langmuir Monolayers. A Heads-and-tails Model, J. Phys. Chem. B 103, 3417–3424.Google Scholar
  26. Razumovsky, L. and Damodaran, S.: 1999, Surface Activity-compressibility Relationship of Proteins at the Air-water Interface, Langmuir 15, 1392–1399.Google Scholar
  27. Schopf, J. W.: 1998, Tracing the Roots of the Universal Tree of Life, in A. Brack (ed.), TheMolecular Origins of Life, Cambridge University Press, Chapter 16, pp. 336-362.Google Scholar
  28. Shah, D. O.: 1970, The Origin of Membranes and Related Surface Phenomena, in C. Ponnamperuma (ed.), Exobiology, North Holland, Chapter 7, pp. 336-362.Google Scholar
  29. Shock, E. L., McCollom, T. and Schulte, M. D.: 1995, Geochemical Constraints on Chemolithoautotrophic Reactions in Hydrothermal Systems, Orig. Life Evol. Biosph. 25, 141–159.Google Scholar
  30. Simoneit, B. R. T.: 1995, Evidence for Organic Synthesis in High Temperature Aqueous Media-Facts and Prognosis, Orig. Life Evol. Biosph. 25, 119–140.Google Scholar
  31. Ställberg-Stenhagen, S. and Stenhagen, E.: 1945, Phase Transitions in Condensed Monolayers of Normal Chain Carboxylic Acids, Nature 156, 239.Google Scholar
  32. Szostak, J. W., Bartel, D. P. and Luisi, P. L.: 2001, Synthesizing Life, Nature 409, 387–390.Google Scholar
  33. Tervahattu, H., Hartonen, K., Kerminen, V.-M., Vaida, V., Tuck, A. F., Kupiainen, K., Aarnio, P. and Koskentalo, T.: 2002a, New Evidence of an Organic Layer on Marine Aerosols, J. Geophys. Res., (in press).Google Scholar
  34. Tervahattu, H., Juhanoja, J. and Kupiainen, K.: 2002b, TOF-SIMS Analyses of an Organic Coating on Marine Aerosols, J. Geophys. Res., (in press).Google Scholar
  35. Tuck, A. F.: 2002, The Role of Atmospheric Aerosols in the Origin of Life, Surv. Geophys., (in press).Google Scholar
  36. Williams, R. J. P. and FraÚsto da Silva, J. J. R.: 1996, The Natural Selection of the Chemical Elements, Oxford University Press.Google Scholar
  37. Woese, C. R.: 1979, A Proposal Concerning the Origin of Life on the Planet Earth, J. Mol. Evol. 13, 95–101.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • D. J. Donaldson
    • 1
  • A. F. Tuck
    • 2
  • V. Vaida
    • 3
  1. 1.Lash Miller Chemical LaboratoriesUniversity of TorontoTorontoCanada
  2. 2.Meteorological Chemistry ProgramNOAA Aeronomy Laboratory R/AL6BoulderU.S.A.
  3. 3.Department of Chemistry and BiochemistryUniversity of ColoradoBoulderU.S.A

Personalised recommendations