, Volume 473, Issue 1–3, pp 255–274 | Cite as

The Salton Sea as critical habitat to migratory and resident waterbirds

  • W. David Shuford
  • Nils Warnock
  • Kathy C. Molina
  • Kenneth K. Sturm


Concern about the Salton Sea ecosystem, based on potential impacts of increasing salinity, contaminants, disease outbreaks, and large die-offs of birds, is heightened because of tremendous prior loss and degradation of wetland habitat in western North America. In 1999, we used a variety of survey methods to describe patterns of abundance of birds at the Salton Sea and in adjacent habitats. Our results further documented the great importance of the Salton Sea within the Pacific Flyway to wintering, migratory, and breeding waterbirds. Exclusive of Eared Grebes, we estimated about 187 000 individual waterbirds at the Salton Sea in January, 88 000 in April, 170 000 in August, and 261 000 in November. Additional surveys of Eared Grebes in November and December suggested the total population of all waterbirds was about 434 000 to 583 000 in those months, respectively. We also documented breeding by about 14 000 pairs of colonial waterbirds. Waterbirds were particularly concentrated along the northern, southwestern, southern, and southeastern shorelines and river deltas. By contrast, some species of wading birds (Cattle Egret, White-faced Ibis, Sandhill Crane) and shorebirds (Mountain Plover, Whimbrel, Long-billed Curlew) were much more numerous in agricultural fields of the Imperial Valley than in wetland habitats at the Sea. Various studies indicate the Salton Sea is of regional or national importance to pelicans and cormorants, wading birds, waterfowl, shorebirds, and gulls and terns. Important taxa are the Eared Grebe, American White Pelican, Double-crested Cormorant, Cattle Egret, White-faced Ibis, Ruddy Duck, Yuma Clapper Rail, Snowy Plover, Mountain Plover, Gull-billed, Caspian, and Black terns, and Black Skimmer. Proposed restoration projects should be carefully assessed to ensure they do not have unintended impacts and are not placed where large numbers of breeding, roosting, or foraging birds concentrate. Similarly, plans to enhance opportunities for recreation or commerce at the Sea should aim to avoid or minimize disturbance to birds. Future research should focus on filling gaps in knowledge needed to effectively conserve birds at the Salton Sea.

conservation concerns nesting colonies migratory stopover Pacific Flyway wetland connectivity wintering area 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alongi, D. M., 1996. The dynamics of benthic nutrient pools and fluxes in tropical mangrove forests. J. mar. Res. 54: 123-148.Google Scholar
  2. Alongi, D. M., 1998. Coastal Ecosystem Processes. CRC Press, Boca Raton: 419 pp.Google Scholar
  3. Armstrong F. A., C. R. Stearns & J. D. Strickland, 1967. The measurement of upwelling and subsequent biological processes by means of the Technicon Autoanalyzer and associated equipment. Deep-Sea Res. 14: 381-389.Google Scholar
  4. Ayukai, T. & D. M. Alongi, 2000. Pelagic carbon fixation and heterotrophy in shallow coastal waters of Sawi Bay, Southern Thailand. Phuket Mar. Biol. Ctr. Spec. Publ. 22: 39-50.Google Scholar
  5. Bano, N., M.-U. Nisa, N. Khan, M. Saleem, P. J. Harrison, S. I. Ahmed & F. Azam, 1997. Significance of bacteria in the flux of organic matter in the tidal creeks of the mangrove ecosystem of the Indus River delta, Pakistan. Mar. Ecol. Prog. Ser. 157: 1-12.Google Scholar
  6. Benner, R. & R. E. Hodson, 1985. Microbial degradation of the leachable and lignocellulosic components of leaves and wood from Rhizophora mangle in a tropical mangrove swamp. Mar. Ecol. Prog. Ser. 23: 221-230.Google Scholar
  7. Bower, C. E. & T. Holm-Hansen, 1980. A salicylate-hypochlorite method for determining ammonia in seawater. Can. J. Fish. Aquat. Sci. 37: 794-798.Google Scholar
  8. Bronk, D. A., P. M. Glibert & B. B. Ward, 1994. Nitrogen uptake, dissolved organic nitrogen release, and new production. Science 265: 1843-1846.Google Scholar
  9. Carlson, C. A., D. A. Hansell & W. O. Smith, Jr., 1998. Organic carbon partitioning during spring phytoplankton blooms in the Ross Sea polynya and the Sargasso Sea. Limnol. Oceanogr. 43: 375-386.Google Scholar
  10. Cloern, J., 1987. Turbidity as a control on phytoplankton biomass and productivity. Contin. Shelf Res. 7: 1367-1381.Google Scholar
  11. del Giorgio, P. A. & J. J. Cole, 1998. Bacterial growth efficiency in natural aquatic systems. Annu. Rev. Ecol. Syst. 29: 503-541.Google Scholar
  12. Dittmar, T. & R. J. Lara, 2001. Do mangroves rather than rivers provide nutrients to coastal environments south of the Amazon River? Evidence from long-term flux measurements. Mar. Ecol. Prog. Ser. 213: 67-77.Google Scholar
  13. Gong, W. K. & J. E. Ong, 1990. Plant biomass and nutrient flux in a managed mangrove forest in Malaysia. Estuar. coast. shelf Sci. 31: 519-530.Google Scholar
  14. Guerrini, F., A. Mazzotti, L. Boni & Pistocchi, 1998. Bacterial-algal interactions in polysaccharide production. Aquat. Microbiol. Ecol. 15: 247-253.Google Scholar
  15. CO2 and NH4+ in marine and freshwaters. Limnol. Oceanogr. 37: 1113-1118.Google Scholar
  16. Harrison, P. J., N. Khan, K. Yin, M. Saleem, N. Bano, M. Nisa, S. I. Ahmed, N. Rizvi & F. Azam, 1997. Nutrient and phytoplankton dynamics in two mangrove tidal creeks of the Indus River delta, Pakistan. Mar. Ecol. Prog. Ser. 157: 13-19.Google Scholar
  17. Hemminga, M. A., F. J. Slim, J. Kazungu, G. M. Ganssen, J. Nieuwenhuize & N. M. Kruyt, 1994. Carbon outwelling from a mangrove forest with adjacent seagrass beds and coral reefs (Gazi Bay, Kenya). Mar. Ecol. Prog. Ser. 106: 291-301.Google Scholar
  18. Holmer, M., F. Ø. Andersen, N. Holmboe, E. Kristensen & N. Thongtham, 1999. Transformation and exchange processes in the Bangrong mangrove forest-seagrass bed system, Thailand. Seasonal and spatial variations in benthic metabolism and sulfur biogeochemistry. Aquat. Microbiol. Ecol. 20: 203-212.Google Scholar
  19. Holmer, M., F. Ø. Andersen, E. Kristensen & N. Thongtham, 2001. Transformation and exchange processes in the Bangrong mangrove forest-seagrass bed system, Thailand; seasonal variations in benthic primary production and nutrient dynamics. Wetlands Ecol. Management 9: 141-158.Google Scholar
  20. Howes, B. L. & Goehringer, D. D., 1994. Porewater drainage and dissolved organic carbon and nutrient losses through the intertidal creekbanks of a New England salt marsh. Mar. Ecol. Prog. Ser. 114: 289-301.Google Scholar
  21. Ittekkot, V., 1982. Variations of dissolved organic matter during a plankton bloom: qualitative aspects, based on sugar and amino acid analysis. Mar. Chem. 11: 143-158.Google Scholar
  22. Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems. 2nd edn. Cambridge University Press, Cambridge: 509 pp.Google Scholar
  23. Kristensen E. & F. Ø. Andersen, 1987. Determination of organic carbon in marine sediments: comparison of two CHN-analyzer methods. J. exp. mar. Biol. Ecol. 109: 15-23.Google Scholar
  24. Kristensen, E., F. Ø. Andersen, N. Holmboe, M. Holmer & N. Thongtham, 2000. Carbon and nitrogen mineralization in sediment of the Bangrong mangrove area, Phuket, Thailand. Aquat. Microb. Ecol. 22: 199-213.Google Scholar
  25. Kristensen, E., M. Holmer, G. T. Banta, M. H. Jensen & K. Hansen, 1995. Carbon, nitrogen and sulfur cycling in sediments of the Ao Nam Bor mangrove forest, Phuket, Thailand: a review. Phuket mar. biol. Cent. Res. Bull. 60: 37-64.Google Scholar
  26. Lara, R. J. & T. Dittmar, 1999. Nutrient dynamics in a mangrove creek (North Brazil) during the dry season. Mangroves and Salt Marshes 3: 185-195.Google Scholar
  27. Madden, C. J. & J. W. Day, 1992. Induced turbulence in rotating bottles affects phytoplankton productivity measurements in turbid waters. J. Plank. Res. 14: 1171-1191.Google Scholar
  28. Mohammed, S. M. & R. W. Johnstone, 1995. Spatial and temporal variations in water column nutrient concentrations in a tidally dominated mangrove creek: Chwaka Bay, Zanzibar. Ambio 24: 482-486.Google Scholar
  29. Moran, M. A., R. J. Wicks & R. E. Hodson, 1991. Export of dissolved organic matter from a mangrove swamp ecosystem: evidence from natural fluorescence, dissolve lignin phenols, and bacterial secondary production. Mar. Ecol. Prog. Ser. 76: 175-184.Google Scholar
  30. Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. 27: 31-36.Google Scholar
  31. Nagata, T., 2000. Production mechanisms of dissolved organic matter. In Kirchman, D. L. (ed.), Microbial Ecology of the Ocean. Wiley, New York: 121-152.Google Scholar
  32. Pakulski, J. D., 1986. The release of reducing sugars and dissolved organic carbon from Spartina alterniflora Loisel in a Georgia salt marsh. Estuar. coast. shelf Sci. 22: 385-394.Google Scholar
  33. Parsons, T. R., Y. Maita & C.M. Lalli, 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford: 173 p.Google Scholar
  34. Rivera-Monroy, V. H., J. W. Day, R. R. Twilley, F. Vera-Herrera & C. Coronado-Molina, 1995. Flux of nitrogen and sediment in a fringe mangrove forest in Terminos Lagoon, Mexico. Estuar. coast. shelf Sci. 40: 139-160.Google Scholar
  35. Rivera-Monroy, V. H., C. J. Madden, J. W. Day, R. R. Twilley, F. Vera-Herrera & H. Alvarez-Guillen, 1998. Seasonal coupling of a tropical mangrove forest and an estuarine water column: enhancement of aquatic primary productivity. Hydrobiologia 379: 41-53.Google Scholar
  36. Robertson, A. I., 1986. Leaf-burying crabs: their influence on energy flow and export from mixed mangrove forests (Rhizophora spp.) in northeastern Australia. J. exp. mar. Biol. Ecol. 102: 237-248.Google Scholar
  37. Søndergaard, M. & M. Middelboe, 1995. A cross-system review of labile dissolved organic carbon. Mar. Ecol. Prog. Ser. 118: 283-294.Google Scholar
  38. Søndergaard, M., P. J. le B. Williams, G. Cauwet, B. riemann, C. Robinson, S. Terzic, E. M. S. Woodward & J. Worm, 2000. Net accumulation and flux of dissolved organic carbon and dissolved organic nitrogen in marine plankton communities. Limnol. Oceanogr. 45: 1097-1111.Google Scholar
  39. Strom, S. L., R. Benner, S. Ziegler & M. J. Dagg, 1997. Planktonic grazers are a potentially important source of marine dissolved organic carbon. Limnol. Oceanogr. 42: 1364-1374.Google Scholar
  40. Trott, L. A. & D. M. Alongi, 1999. Variability in surface water chemistry and phytoplankton biomass in two tropical, tidally dominated mangrove creeks. Mar. Freshwat. Res. 50: 451-457.Google Scholar
  41. Twilley, R. R., 1985. The exchange of organic carbon in basin mangrove forests in a southwest Florida estuary. Estuar. coast. shelf Sci. 20: 543-557.Google Scholar
  42. Williams, P. J. le B., 1990. The importance of losses during microbial growth; commentary on the physiology, measurement and ecology of the release of dissolved organic material. Mar. Microb. Food Webs 4: 175-206.Google Scholar
  43. Wolanski, E., Y. Mazda & P. Ridd, 1992. Mangrove hydrodynamics. In Robertson A. I. & D. M. Alongi (eds), Troical Mangrove Ecosystems, Am. Geophys. Union, Washington, DC: 43-62.Google Scholar
  44. Wolanski, E., S. Spagnol, S. Thomas, K. Moore, D. M. Alongi, L. Trott & A. Davidson, 2000. Modelling and visualizing the fate of shrimp pond effluent in a mangrove-fringed tidal creek. Estuar. coast. shelf Sci. 50: 85-97.Google Scholar
  45. Velimerov, B. & M. Walenta-Simon, 1992. Seasonal changes in specific growth rates, production and biomass of a bacterial community in the water column above a Mediterranean seagrass system. Mar. Ecol. Prog. Ser. 80: 237.Google Scholar
  46. Ziegler, S. & R. Benner, 1999. Dissolved organic carbon cycling in a subtropical seagrass-dominated lagoon. Mar. Ecol. Prog. Ser. 180: 149-160.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • W. David Shuford
    • 1
  • Nils Warnock
    • 1
  • Kathy C. Molina
    • 1
  • Kenneth K. Sturm
    • 2
  1. 1.Point Reyes Bird ObservatoryStinson BeachU.S.A
  2. 2.Sonny Bono Salton Sea National Wildlife RefugeCalipatriaU.S.A

Personalised recommendations