Journal of Materials Science

, Volume 37, Issue 16, pp 3467–3475 | Cite as

Influence of alumina dopant on the properties of yttria-stabilized zirconia for SOFC applications

  • A. A. E. Hassan
  • N. H. Menzler
  • G. Blass
  • M. E. Ali
  • H. P. Buchkremer
  • D. Stöver
Article

Abstract

The most important component of the solid oxide fuel cell (SOFC) is the dense electrolyte. Besides gastightness it must fulfill the requirements of good ionic conductivity and stability in reducing and oxidizing atmospheres. For this application yttria-stabilized zirconia is widely used. In this paper the effect of calcination temperature and milling time for zirconia powder stabilized with 8 mol% yttria (8YSZ) on the gastightness of the electrolyte layer was investigated. The influence of the addition of 0.77, 2 and 4 wt% Al2O3 to 8YSZ powder on the tightness and the sinterability of the electrolyte layer was studied. The performance of the cell with the electrolyte doped with 0.77 wt% Al2O3 was also investigated. The experiments show that the electrolyte layer, which was fabricated from 8YSZ powder (calcined at 1200°C) with particle size distributions of 0.25 μm–<0.3 μm (d50), gives the lowest leak rate. The Al2O3 added to 8YSZ improved the electrolyte tightness by increasing the sinterability of the electrolyte layer and reducing the sintering time. The performance of a cell with Al2O3 added to the electrolyte is better than that of a cell with an electrolyte of pure 8YSZ, especially at operating temperatures between 800 and 900°C.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. P. S. Badwal, Solid State Ionics 52 (1992) 23.Google Scholar
  2. 2.
    J. F. Shackelford, P. S. Nicholson and W. W. Smeltzer, Am.Ceram.Soc.Bull. 53(12) (1974) 565.Google Scholar
  3. 3.
    K. C. Radford and R. G. Bratton, J.Mater.Sci. 14(1) (1979) 59.Google Scholar
  4. 4.
    S. P. S. Badwal, ibid. 19(6) (1984) 1767.Google Scholar
  5. 5.
    K. C. Radford and R.G. Bratton, ibid. 14(1) (1979) 66.Google Scholar
  6. 6.
    R. V. Wilhelm and D. S. Howarth, Am.Ceram.Soc. Bull. 58(2) (1979) 228.Google Scholar
  7. 7.
    M. J. Verkerk, A. J. A. Winnubst and A. J. Burggraaf, J.Mater.Sci. 17(11) (1982) 3113.Google Scholar
  8. 8.
    K. Keizer, A. J. Burggraaf and G. Dewith, ibid. 17(4) (1982) 1095.Google Scholar
  9. 9.
    E. P. Butler and J. Drennan, J.Amer.Ceram.Soc. 65(10) (1982) 474.Google Scholar
  10. 10.
    M. Miyayama, H. Yanagida and A. Asada, Am.Ceram.Soc.Bull. 64(4) (1985) 660.Google Scholar
  11. 11.
    X. Guo, C. Q. Tang and R. Z. Yuan, J.Europ.Ceram. Soc. 15 (1995) 25.Google Scholar
  12. 12.
    X. Guo and R. Z. Yuan, J.Mater.Sci. 30 (1995) 923.Google Scholar
  13. 13.
    A. J. Feighery and J. T. S. Irvine, Solid State Ionics 121 (1999) 209.Google Scholar
  14. 14.
    Y. Ji, J. Liu, Z. LÜ, X. Zhao, T. He and W. Su, ibid. 126 (1999) 277.Google Scholar
  15. 15.
    J. H. Lee, T. Mori, J. G. Li, T. Ikegami, M. Komatsu and H. Haneda, J.Amer.Ceram.Soc. 83(5) (2000) 1273.Google Scholar
  16. 16.
    H. P. Buchkremer, U. Diekmann and D. StÖVER, in Proc. of the 2nd European SOFC Forum, Oslo, Norway (1996) p. 221.Google Scholar
  17. 17.
    W. A. Meulenberg, N. H. Menzler, H. P. Buchkremer and D. StÖVER, Ceram.Trans., to be published.Google Scholar
  18. 18.
    R. WilkenhÖNER, T. Hauber, W. MallÉNER, H. P. Buchkremer, in Proc. of the 2nd EuropeanSOFCForum, Oslo, Norway (1996) p. 279.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • A. A. E. Hassan
    • 1
  • N. H. Menzler
    • 2
  • G. Blass
    • 2
  • M. E. Ali
    • 1
  • H. P. Buchkremer
    • 2
  • D. Stöver
    • 2
  1. 1.Nuclear Research Center, Metallurgy DepartmentAtomic Energy AuthorityCairoEgypt
  2. 2.Forschungszentrum JülichInstitute for Materials and Processes in Energy Systems IWV-1JülichGermany

Personalised recommendations