Designs, Codes and Cryptography

, Volume 27, Issue 1–2, pp 131–137 | Cite as

Enumeration of 2-(9, 3, λ) Designs and Their Resolutions

  • Patric R. J. Östergård
  • Petteri Kaski


We consider 2-(9, 3, λ) designs, which are known to exist for all λ ≥ 1, andenumerate such designs for λ = 5 and their resolutions for 3 ≤ λ ≤ 5, the smallestopen cases. The number of nonisomorphic such structures obtained is 5 862 121 434, 426, 149 041, and 203 047732, respectively. The designs are obtained by an orderly algorithm, and the resolutions by two approaches:either by starting from the enumerated designs and applying a clique-finding algorithm on two levels or by anorderly algorithm.

automorphism group BIBD oderly algorithm resolved design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. E. Brouwer, J. B. Shearer, N. J. A. Sloane and W. D. Smith, A new table of constant weight codes, IEEE Trans. Inform. Theory, Vol. 36 (1990) pp. 1334–1380.Google Scholar
  2. 2.
    R. Carraghan and P. M. Pardalos, An exact algorithm for the maximum clique problem, Oper. Res. Lett., Vol. 9 (1990) pp. 375–382.Google Scholar
  3. 3.
    M. J. Colbourn, Algorithmic aspects of combinatorial designs: A survey, Ann. Discrete Math., Vol. 26 (1985) pp. 67–136.Google Scholar
  4. 4.
    P. C. Denny and P. B. Gibbons, Case studies and new results in combinatorial enumeration, J. Combin. Des., Vol. 8 (2000) pp. 239–260.Google Scholar
  5. 5.
    P. C. Denny and R. Mathon, A census of t-(t +8, t +2, 4) designs, 2 ≤ t ≤ 4, J. Statist. Plann. Inference, to appear.Google Scholar
  6. 6.
    J. H. Dinitz, D. K. Garnick and B. D. McKay, There are 526,915,620 nonisomorphic 1–factorizations of K 12, J. Combin. Des., Vol. 2 (1994) pp. 273–285.Google Scholar
  7. 7.
    I. A. Faradžev, Constructive enumeration of combinatorial objects, Problémes combinatoires et théorie des graphes, Orsay 1976, Colloq. int. CNRS No. 260 (1978) pp. 131–135.Google Scholar
  8. 8.
    P. B. Gibbons, Computing techniques for the construction and analysis of block designs, Ph.D. Thesis, University of Toronto (1976).Google Scholar
  9. 9.
    A. V. Ivanov, Constructive enumeration of incidence systems, Ann. Discrete Math., Vol. 26 (1985) pp. 227–246.Google Scholar
  10. 10.
    P. Kaski and P. R. J. Ostergard, There exists no (15, 5, 4) RBIBD, J. Combin. Des.,Vol. 9 (2001) pp. 357–362.Google Scholar
  11. 11.
    R. Mathon and D. Lomas, A census of 2–(9, 3, 3) designs, Australas. J. Combin., Vol. 5 (1992) pp. 145–158.Google Scholar
  12. 12.
    R. Mathon and A. Rosa, Some results on the existence and enumeration of BIBDs, Math. Rep. 125–Dec-1985, Department of Mathematics and Statistics, McMaster University (1985).Google Scholar
  13. 13.
    R. Mathon and A. Rosa, 2–(v, k, λ) designs of small order, In (C. J. Colbourn and J. H. Dinitz, eds.), The CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton (1996) pp. 3–41.Google Scholar
  14. 14.
    B. D. McKay, autoson-a distributed batch system for UNIX workstation networks (version 1.3), Tech. Rep. TR-CS-96–03, Computer Science Department, Australian National University (1996).Google Scholar
  15. 15.
    B. D. McKay, Isomorph-free exhaustive generation, J. Algorithms, Vol. 26 (1998) pp. 306–324.Google Scholar
  16. 16.
    B. D. McKay, nauty user' guide (version 1.5), Tech. Rep. TR-CS-90–02, Computer Science Department, Australian National University (1990).Google Scholar
  17. 17.
    P. R. J. Ostergard, Enumeration of 2–(12, 3, 2) designs, Australas. J. Combin., Vol. 22 (2000) pp. 227–231.Google Scholar
  18. 18.
    P. R. J. Ostergard, A fast algorithm for the maximum clique problem, Discrete Appl. Math., Vol. 120 (2002) pp. 195–205.Google Scholar
  19. 19.
    C. Pietsch, Uber die Enumeration von Inzidenzstrukturen, Ph.D. Thesis, Universität Rostock (1993).Google Scholar
  20. 20.
    R. C. Read, Every one a winner, or How to avoid isomorphism search when cataloguing combinatorial configurations, Ann. Discrete Math., Vol. 2 (1978) pp. 107–120.Google Scholar
  21. 21.
    N. V. Semakov and V. A. Zinov'ev, Equidistant q-ary codes with maximal distance and resolvable balanced incomplete block designs, Problemy Peredachi Informatsii,Vol. 4, No.2 (1968) pp. 3–10. In Russian: English translation in Problems Inform. Transmission, Vol. 4, No. 2 (1968) pp. 1–7.Google Scholar
  22. 22.
    A. P. Street and D. J. Street, Combinatorics of Experimental Design, Clarendon Press, Oxford (1987).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Patric R. J. Östergård
    • 1
  • Petteri Kaski
    • 2
  1. 1.Department of Electrical and Communications EngineeringHelsinki University of TechnologyHUTFinland
  2. 2.Department of Computer Science and EngineeringHelsinki University of TechnologyHUTFinland

Personalised recommendations