Nonlinear Dynamics

, Volume 29, Issue 1–4, pp 281–296 | Cite as

Analogue Realizations of Fractional-Order Controllers

  • I. Podlubny
  • I. Petráš
  • B. M. Vinagre
  • P. O'Leary
  • Ľ. Dorčák
Article

Abstract

An approach to the design of analogue circuits, implementingfractional-order controllers, is presented. The suggestedapproach is based on the use of continued fraction expansions;in the case of negative coefficients in a continued fractionexpansion, the use of negative impedance converters is proposed.Several possible methods for obtaining suitable rational appromixationsand continued fraction expansions are discussed. An exampleof realization of a fractional-order Iλ controlleris presented and illustrated by obtained measurements.The suggested approach can be used for the control of veryfast processes, where the use of digital controllers isdifficult or impossible.

fractional calculus fractional differentiation fractional integration fractional-order controller realization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Miller, K. S. and Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.Google Scholar
  2. 2.
    Oldham, K. B. and Spanier, J., The Fractional Calculus, Academic Press, New York, 1974.Google Scholar
  3. 3.
    Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, CA, 1999.Google Scholar
  4. 4.
    Samko, S. G., Kilbas, A. A., and Maritchev, O. I., Integrals and Derivatives of the Fractional Order and Some of Their Applications, Nauka i Tekhnika, Minsk, 1987 [in Russian].Google Scholar
  5. 5.
    Podlubny, I., 'Fractional-order systems and PIλDμ-controllers', IEEE Transactions on Automatic Control 44, 1999, 208–214.Google Scholar
  6. 6.
    Podlubny, I., 'Fractional-order systems and fractional-order controllers', UEF-03–94, Slovak Academy of Sciences, Kosice, 1994.Google Scholar
  7. 7.
    Dorf, R. C. and Bishop, R. H., Modern Control Systems, Addison-Wesley, New York, 1990.Google Scholar
  8. 8.
    Oustaloup, A., Systèmes Asservis Linéaires d'Ordre Fractionnaire: Théorie et Pratique, Editions Masson, Paris, 1983.Google Scholar
  9. 9.
    Oustaloup, A., La Dérivation non Entière, Hermès, Paris, 1995.Google Scholar
  10. 10.
    Oustaloup, A., Levron, F., Mathieu, B., and Nanot, F. M., 'Frequency-band complex noninteger differentiator: Characterization and synthesis', IEEE Transactions on Circuit and Systems-I: Fundamental Theory and Application 47, 2000, 25–39.Google Scholar
  11. 11.
    Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., Numerical Recipes in C. The Art of Scientific Computing, 2nd edition, Cambridge University Press, Cambridge, 1992.Google Scholar
  12. 12.
    Dutta Roy, S. C., 'On the realization of a constant-argument immitance of fractional operator', IEEE Transactions on Circuit Theory 14, 1967, 264–374.Google Scholar
  13. 13.
    Vinagre, B. M., Podlubny, I., Hernandez, A., and Feliu, V., 'On realization of fractional-order controllers', in Proceedings of the Conference Internationale Francophone d'Automatique, Lille, Jule 5–8, P. Borne, J.-P. Richard, and Ph. Vanheeghe (eds.), 2000, pp. 945–950.Google Scholar
  14. 14.
    Carlson, G. E. and Halijak, C. A., 'Approximation of fractional capacitors (1/s)1/n by a regular Newton process', IEEE Transactions on Circuit Theory 11, 1964, 210–213.Google Scholar
  15. 15.
    Matsuda, K. and Fujii, H., 'H -optimized wave-absorbing control: analytical and experimental results', Journal of Guidance, Control, and Dynamics 16, 1993, 1146–1153.Google Scholar
  16. 16.
    Heymans, N. and Bauwens, J.-C., 'Fractal rheological models and fractional differential equations for viscoelastic behavior', Rheologica Acta 33, 1994, 210–219.Google Scholar
  17. 17.
    Kvasil, J. and Čajka, J., An Introduction to Synthesis of Linear Circuits, SNTL/ALFA, Prague, 1981 [in Czech].Google Scholar
  18. 18.
    Khovanskii, A. N., The Application of Continued Fractions and Their Generalizations to Problems in Approximation Theory, Noordhoff, Groningen, 1963.Google Scholar
  19. 19.
    Bode, H. W., Network Analysis and Feedback Amplifier Design, Tung Hwa Book Company, Shanghai, China, 1949.Google Scholar
  20. 20.
    Dostal, J., Operational Amplifiers, Butterworth-Heinemann, Boston, MA, 1993.Google Scholar
  21. 21.
    Nakagava, M. and Sorimachi, K., 'Basic characteristics of a fractance device', IEICE Transactions Fundamentals E75–A, 1992, 1814–1818.Google Scholar
  22. 22.
    Oldham, K. B. and Zoski, C. G., 'Analogue instrumentation for processing polarographic data', Journal of Electroanalytical Chemistry 157, 1983, 27–51.Google Scholar
  23. 23.
    Petráš, I. and Dorčák, L'., 'Some possibilities for realization of fractional order controller', Envirautom 4, 1999, 83–90 [in Slovak].Google Scholar
  24. 24.
    Wang, J. C., 'Realizations of generalized Warburg impedance with RC ladder networks and transmission lines', Journal of Electrochemical Society 134, 1987, 1915–1920.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • I. Podlubny
    • 1
  • I. Petráš
    • 1
  • B. M. Vinagre
    • 2
  • P. O'Leary
    • 3
  • Ľ. Dorčák
    • 1
  1. 1.Department of Informatics and Process Control, BERG FacultyTechnical University of KošiceKošiceSlovak Republic
  2. 2.Department of Electronics and Electromechanical Engineering, Industrial Engineering SchoolUniversity of ExtramaduraBadajozSpain
  3. 3.Institute of Automation, Montanuniversität LeobenLeobenAustria

Personalised recommendations