Advertisement

Journal of Materials Science

, Volume 37, Issue 16, pp 3509–3514 | Cite as

Wettability of TiC by commercial aluminum alloys

  • C. A. Leon
  • V. H. Lopez
  • E. Bedolla
  • R. A. L. Drew
Article

Abstract

The effect of alloying elements on the wettability of TiC by commercial aluminum alloys (1010, 2024, 6061 and 7075) was investigated at 900°C using a sessile drop technique. Wetting increased in the order 6061 < 7075 < 2024 < 1010 for both, static argon or vacuum atmospheres. Alloys 1010 and 2024 wet TiC under both atmospheres, leading to contact angles in the order of 60° and less, while 7075 only wets under vacuum, with the poorest wettability being exhibited by 6061. Evaporation of Zn and Mg under vacuum conditions contributed to the rupture of the oxide film covering the aluminum drop and thereby improving wetting and spreading. Continuous and isolate Al4C3 was detected in all the cases. CuAl2 precipitation at the interface slightly decreased Al4C3 formation and increased the adhesion of 2024 to TiC.

Keywords

Polymer Precipitation Atmosphere Evaporation Argon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Asthana and S. N. Tewari, Compos.Manuf. 4 (1993) 3.Google Scholar
  2. 2.
    F. Delannay, L. Froyen and A. Deruyttere, J.Mater.Sci. 22 (1987) 1.Google Scholar
  3. 3.
    A. Banerji, J. K. Rohatgi and W. Reif, Metall.Tech. 38 (1984) 656.Google Scholar
  4. 4.
    R. Asthana, J.Mater.Sci. 33 (1998) 1959.Google Scholar
  5. 5.
    D. Muscat and R. A. L. Drew, J.Mater.Sci.Technol. 8 (1992) 971.Google Scholar
  6. 6.
    Idem., Metall.Trans. 25A (1994) 2357.Google Scholar
  7. 7.
    A. Contreras, M. Salazar, E. Bedolla, C. A. Leon and R. A. L. Drew, Mat.Manuf.Process 15 (2000) 163.Google Scholar
  8. 8.
    A. Albiter, C. A. Leon, R. A. L. Drew and E. Bedolla, Mater.Sci.Eng. 289A (2000) 109.Google Scholar
  9. 9.
    A. C. Ferro and B. Derby, Acta Metall.Mater. 43 (1995) 3061.Google Scholar
  10. 10.
    V. Laurent, D. Chatain, C. Chatillon and N. Eustathopoulos, ibid. 36 (1998) 1797.Google Scholar
  11. 11.
    H. Miyahara, R. Muroaka, N. Mori and K. Ogi, J.Japan Inst.Metals 59 (1995) 660.Google Scholar
  12. 12.
    S. K. Rhee, J.Amer.Ceram.Soc. 53 (1970) 386.Google Scholar
  13. 13.
    V. Y. Kononenko, G. P. Shvejkin, A. L. Sukhman, V. I. Lomotsev and B. V. Mitrofanov, Poroshk.Metall. 9 (1976) 48.Google Scholar
  14. 14.
    N. Froumin, N. Frage, M. Polak and M. P. Dariel, Scripta Metal. 37 (1997) 1263.Google Scholar
  15. 15.
    N. Eusthatopoulos, J. C. Joud, P. Desre and J. M. Hicter, J.Mater Sci. 9 (1974) 1233.Google Scholar
  16. 16.
    Z. Lijun, W. Jinbo, Q. Jiting and N. Oiu, in “Interfaces in Metal-Ceramics Composites, ” edited by R. Y. Lin et al. (TMS, Warrendale, PA, 1989) p. 213.Google Scholar
  17. 17.
    R. N. Lumley, T. B. Sercombe and G. B. Schaffer, Metall.Mater.Trans. 30A (1999) 457.Google Scholar
  18. 18.
    N. Froumin, N. Frage, M. Polak and M. P. Dariel, Scripta Metal. 48 (2000) 1435.Google Scholar
  19. 19.
    T. A. Orkasov, High Temperature, 34 (1996) 490.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • C. A. Leon
    • 1
  • V. H. Lopez
    • 1
  • E. Bedolla
    • 1
  • R. A. L. Drew
    • 2
  1. 1.Instituto de Investigaciones MetalúrgicasUniversidad Michoacana de San Nicolás de HidalgoMorelia, Mich.México
  2. 2.Department of Mining and Metallurgical EngineeringMcGill UniversityMontrealCanada

Personalised recommendations