Boundary-Layer Meteorology

, Volume 104, Issue 3, pp 333–358 | Cite as

Evaluating Models of The Neutral, Barotropic Planetary Boundary Layer using Integral Measures: Part I. Overview

  • G. D. Hess
  • J. R. Garratt
Article

Abstract

Data for the cross-isobaric angle α0, the geostrophic drag coefficient Cg, and the functions A and B of Rossby number similarity theory, obtained from meteorological field experiments, are used to evaluate a range of models of the neutral, barotropic planetary boundary layer. The data give well-defined relationships for α0, Cg, and the integrated dissipation rate over the boundary layer, as a function of the surface Rossby number. Lettau's first-order closure mixing-length model gives an excellent fit to the data; other simple models give reasonable agreement. However more sophisticated models, e.g., higher-order closure, large-eddy simulation, direct numerical simulation and laboratory models, give poor fits to the data. The simplemodels have (at least) one free parameter in their turbulence closure that is matched toatmospheric observations; the more sophisticated models either base their closure onmore general flows or have no free closure parameters. It is suggested that all of theatmospheric experiments that we could locate violate the strict simplifying assumptionsof steady, homogeneous, neutral, barotropic flow required by the sophisticated models.The angle α0 is more sensitive to violations of the assumptions than is Cg.

The behaviour of the data varies in three latitude regimes. In middle and high latitudes the observed values of A and B exhibit little latitudinal dependence; the best estimates are A = 1.3 and B = 4.4. In lower latitudes the neutral, barotropic Rossby number theory breaks down. The value of B increases towards the Equator; the determination of A is ambiguous – the trend can increase or decrease towards the Equator. Between approximately 5° and 30° latitude, the scatter in the data is thought to be primarily due to the inherent presence of baroclinicity. The presence of the trade-wind inversion, thermal instability and the horizontal component of the Earth's rotation ΩH also contribute.Marked changes in the values of A and B occur in the region between the Equator andapproximately 5° latitude, as the Coriolis parameter |f| approaches zero. Although the variation of A and B with latitude suggests some similarity to the results obtained from the direct numerical simulations, the presence of additional complexities in the real atmosphere that are not included in the numerical model, precludes a meaningful direct comparison.

Direct numerical simulation Higher-order closure Large-eddy simulation Neutral barotropic planetary boundary layer Rossby number similarity theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Åkerblom, F.: 1908, 'Recherches sur les courants les plus bas de l'atmosphère au-dessus du Paris', Nova Acta Reg. Soc. Sci., Ser. 4, 2, 1–45.Google Scholar
  2. Andre, J.-C. and Lacarrère, P.: 1980, 'simulation numérique détaillée de la couche limite atmosphérique comparaison avec la situation des 2 et 4 Juillet 1977 à VOVES', La Meteorologie Vie serie, 5-49.Google Scholar
  3. Arya, S. P. S.: 1975, 'Geostrophic Drag and Heat Transfer Relations for the Atmospheric Boundary Layer', Quart. J. Roy. Meteorol. Soc. 101, 147–161.Google Scholar
  4. Arya, S. P. S.: 1978, 'Comparative Effects of Stability, Baroclinity and the Scale-Height Ratio on Drag Laws for the Atmospheric Boundary Layer', J. Atmos. Sci. 35, 40–46.Google Scholar
  5. Arya, S. P. S. and Wyngaard, J. C.: 1975, 'Effect of Baroclinicity on Wind Profiles and the Geostrophic Drag Law for the Convective Boundary Layer', J. Atmos. Sci. 32, 767–778.Google Scholar
  6. Axenfeld, F.: 1978, 'Beiträge zur Meteorologie eines Steppengebietes (Tsumeb/S.W.A.). 11. Mitteilung: Die atmosphärishe Grenzschicht während der Regenzeit', Meteorol. Rdsch. 31, 161–179.Google Scholar
  7. Barad, M. L. (ed.): 1958, 'Project Prairie Grass: A Field Program in Diffusion (3 Vols.)', Geophys. Res. Papers, No. 59, Air Force Cambridge Research Laboratory, Bedford, MA.Google Scholar
  8. Barad, M. L. and Fuquay, J. J.: 1962, 'The Green Glow Diffusion Program (2 Vols.)', Geophys. Res. Papers, No. 73, Air Force Cambridge Research Laboratory, Bedford, MA.Google Scholar
  9. Bernstein, A. B.: 1959, The Effect of a Horizontal Temperature Gradient on the Surface Wind, unpublished M.S. Thesis, Department of Meteorology, The Pennsylvania State University, University Park, PA.Google Scholar
  10. Billard, C., Andre, J.-C., and Du Vachat, R.: 1981, 'On the Similarity Functions A and B as Determined from the “VOVES” Experiment', Boundary-Layer Meteorol. 21, 495–507.Google Scholar
  11. Blackadar, A. K.: 1965, 'A Simplified Two-Layer Model of the Baroclinic Neutral Atmospheric Boundary Layer', in Flux of Heat and Momentum in the Planetary Boundary Layer of the Atmosphere, AFCRL-65-531, Department of Meteorology, The Pennsylvania State University, University Park, pp. 49–65.Google Scholar
  12. Blackadar, A. K. and Ching, J. K. S.: 1965, 'Wind Distribution in a Steady State Planetary Boundary Layer of the Atmosphere with Upward Turbulent Heat Flux', in Flux of Heat and Momentum in the Planetary Boundary Layer of the Atmosphere, AFCRL-65-531, Department of Meteorology, The Pennsylvania State University, University Park, PA, pp. 23–48.Google Scholar
  13. Blackadar, A. K. and Tennekes, H.: 1968, 'Asymptotic Similarity in Neutral Barotropic Planetary Boundary Layers', J. Atmos. Sci. 25, 1015–1022.Google Scholar
  14. Brown, R. A.: 1981, 'Modeling the Geostrophic Drag Coefficient for AIDJEX', J. Geophys. Res. 86(C3), 1989–1994.Google Scholar
  15. Brown, R. A.: 1982, 'On Two-Layer Models and the Similarity Functions for the PBL', Boundary-Layer Meteorol. 24, 451–463Google Scholar
  16. Brummer, B.: 1976, 'The Coefficients of the Mechanical Resistance Law over the Tropical Ocean', Beitr. Phys. Atmos. 49, 299–305.Google Scholar
  17. Caldwell, D. R., Van Atta, C. W., and Heland, K. N.: 1972, 'A Laboratory Study of the Turbulent Ekman Layer', Geophys. Fluid Dyn. 3, 125–160.Google Scholar
  18. Charnock, H., Francis, J. R. D., and Sheppard, P. A.: 1956, 'An Investigation of Wind Structure in the Trades: Anegada, 1953', Phil. Trans. Roy. Soc. London A249, 179–234.Google Scholar
  19. Clarke, R. H.: 1970, 'Observational Studies in the Atmospheric Boundary Layer', Quart. J. Roy. Meteorol. Soc. 96, 91–114.Google Scholar
  20. Clarke, R. H. and Brook, R. R. (eds.): 1979, The Koorin Expedition: Atmospheric Boundary Layer Data Over Tropical Savannah Land, Australian Government Publishing Service, Canberra, 359 pp.Google Scholar
  21. Clarke, R. H. and Hess, G. D.: 1974, 'Geostrophic Departure and the Functions A and B of Rossby-Number Similarity Theory', Boundary-Layer Meteorol. 7, 267–287.Google Scholar
  22. Clarke, R. H. and Hess, G. D.: 1975, 'On the Relation between Surface Wind and Pressure Gradient, Especially in Lower Latitudes', Boundary-Layer Meteorol. 9, 325–339.Google Scholar
  23. Coleman, G. N.: 1999, 'Similarity Statistics from a Direct Numerical Simulation of the Neutrally Stratified Planetary Boundary Layer', J. Atmos. Sci. 56, 891–900.Google Scholar
  24. Coleman, G. N., Ferziger, J. H., and Spalart, P. R.: 1990, 'A Numerical Study of the Turbulent Ekman Layer', J. Fluid Mech. 213, 313–348.Google Scholar
  25. Coulter, R. L., Wesely, M. L., Sisterson, D. L., Martin, T. J., Hart, R. L., Cook, D. R., Hess, P. E., Eloranta, E. W., and Hicks, B. B.: 1986, The DeWitt Field Study: Surface Flux Observations, In-Situ Soundings, and Remote Sensing of Conditions Affecting the Behavior of the Mixed Layer Over Land, ANL-ER-85-1, Argonne National Laboratory, Argonne, IL, available from NTIS, Springfield, VA, 30 pp. + appendices.Google Scholar
  26. Csanady, G. T.: 1967, 'On the “Resistance Law” of a Turbulent Ekman Layer', J. Atmos. Sci. 24, 467–471.Google Scholar
  27. Deacon, E. L.: 1973, 'Geostrophic Drag Coefficients', Boundary-Layer Meteorol. 5, 321–340.Google Scholar
  28. Ekman, V. W.: 1902, 'Om Jordrotationens Inverkan Pä Windströmmar i Hafvet', Nyt. Mag. Naturv. 40, 37–63.Google Scholar
  29. Ekman, V. W.: 1905, 'On the Influence of the Earth's Rotation on Ocean Currents', Arkiv. Math. Astron. Fyjik. 2, 1–53.Google Scholar
  30. Estoque, M. A.: 1971, 'The Planetary Boundary LayerWind over Christmas Island', Mon. Wea. Rev. 99, 193–201.Google Scholar
  31. Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., and Young, G. S.: 1996, 'Bulk Parameterization of Air-Sea Fluxes for Tropical Ocean-Global Atmosphere Couple-Ocean Atmosphere Response Experiment', J. Geophys. Res. 101(C2), 3747–3764.Google Scholar
  32. Franceschini, G. A.: 1959, Micrometeorological Observations over Non-Ideal Surfaces, Sci. Report, No. 1, AF 19(604)-2250, Department of Meteorology, Texas A and M College, College Station, TX.Google Scholar
  33. Garratt, J. R. and Hess, G. D.: 2002, 'The Idealised, Neutrally Stratified Planetary Boundary Layer', in J. R. Holton, J. Pyle and J. Curry (eds.), Encyclopaedia of Atmospheric Sciences, Academic Press, in press.Google Scholar
  34. Gill, A. E.: 1967, 'The Turbulent Ekman Layer', Department of Applied Mathematics and Theoretical Physics, University of Cambridge, U.K. (unpublished manuscript).Google Scholar
  35. Gordon, A. H.: 1952, 'The Relation between the Mean Vector Surface Wind and the Mean Vector Pressure Gradient over the Oceans', Geofisica Pura e Applicata 21, 49–51.Google Scholar
  36. Grant, A. L. M. and Whiteford, R.: 1987, 'Aircraft Estimates of the Geostrophic Drag Coefficient and the Rossby Similarity Functions A and B over the Sea', Boundary-Layer Meteorol. 39, 219–231.Google Scholar
  37. Gregg, W. R.: 1922, 'An Aerological Survey of the United States: Pt. I, Results of Observations by Means of Kites, Mon. Wea. Rev., Suppl. No. 20, 78 pp.Google Scholar
  38. Haltiner, G. J. and Martin, F. L.: 1957, Dynamical and Physical Meteorology, McGraw Hill, New York, pp. 235–236.Google Scholar
  39. Hasse, L.: 1974, 'On the Surface to Geostrophic Wind Relationship at Sea and the Stability Dependence of the Resistance Law', Beitr. Phys. Atmos. 47, 45–55.Google Scholar
  40. Hasse, L. and Dunckel, M.: 1974, 'Direct Determination of Geostrophic Drag Coefficients at Sea', Boundary-Layer Meteorol. 7, 323–329.Google Scholar
  41. Hess, G. D.: 1973, 'On Rossby-Number Similarity Theory for a Baroclinic Planetary Boundary Layer', J. Atmos. Sci. 30, 1722–1723.Google Scholar
  42. Hess, G. D. and Garratt, J. R.: 2002, 'Evaluating Models of the Neutral, Barotropic Planetary Boundary Layer Using Integral Measures. Part II. Modelling Observed Conditions', Boundary-Layer Meteorol. 104, 359–369.Google Scholar
  43. Hicks, B. B., Hess, G. D., Wesely, M. L., Yamada, T., Frenzen, P., Hart, R. L., Sisterson, D. L., Hess, P. E., Kulhanek, F. C., Lipschutz, R. C., and Zerbe, G. A.: 1981, The Sangamon Field Experiments: Observations of the Diurnal Evolution of he Planetary Boundary Layer over Land, ANL-RER-81-1, Argonne, IL, available from NTIS, Springfield, VA, 44 pp. + appendices.Google Scholar
  44. Holland, J. Z. and Rasmusson, E. M.: 1973, 'Measurements of the Atmospheric Mass, Energy and Momentum Budgets over a 500 Kilometer Square of Tropical Ocean', Mon. Wea. Rev. 101, 44–55.Google Scholar
  45. Holland, J. Z. and Rasmusson, E. M.: 1974: 'Reply', Mon. Wea. Rev. 102, 527–532.Google Scholar
  46. Johnson, W. B.: 1962, Climatology of Atmospheric Boundary-Layer Parameters and Energy Dissipation, Studies of the Three-Dimensional Structure of the Planetary Boundary Layer, Final Report, Department of Meteorology, University of Wisconsin, Madison, WI.Google Scholar
  47. Johnson, W. B.: 1965, Atmospheric Boundary Layer Dynamics over the Forest of Northeastern isconsin, Final Report, Studies of the Effects of Variations in Boundary Conditions on the Atmospheric Boundary Layer, Department of Meteorology, University of Wisconsin, Madison, WI.Google Scholar
  48. Kazanski, A. B. and Monin, A. S.: 1961, 'On the Dynamic Interaction between the Atmosphere and Earth's Surface', Izv. ANSSR, Geophys. Ser. 5, 514–515.Google Scholar
  49. Kinoshita, N.: 1993, 'Structure of Neutrally Stratified Turbulent Ekman Layer as Predicted by Closure Models with Prognostic Equation for Master Length Scale', Papers Meteorol. Geophys. 44, 17–28.Google Scholar
  50. Kondo, J.: 1977, 'Geostrophic Drag and the Cross-Isobar Angle of the Surface Wind in a Baroclinic Convective Boundary Layer', J. Meteorol. Soc. Japan 55, 301–311.Google Scholar
  51. Kudryavtsev, V. N. and Makin, V. K.: 2001, 'The Impact of Air-Flow Separation on the Drag of the Sea Surface', Boundary-Layer Meteorol. 98, 155–171.Google Scholar
  52. Kung, E. C.: 1963, Climatology of the Mechanical Energy Dissipation in the Lower Atmosphere over the Northern Hemisphere, Ph.D. Dissertation, Department of Meteorology, University of Wisconsin, 92 pp.Google Scholar
  53. Kung, E. C.: 1966a, 'Large-Scale Balance of Kinetic Energy in the Atmosphere', Mon. Wea. Rev. 94, 627–640.Google Scholar
  54. Kung, E. C.: 1966b, 'Kinetic Energy Generation and Dissipation in the Large-Scale Atmospheric Circulation', Mon. Wea. Rev. 94, 67–82.Google Scholar
  55. Kung, E. C.: 1968, 'On the Momentum Exchange between the Atmosphere and Earth over the Northern Hemisphere', Mon. Wea. Rev. 96, 337–341.Google Scholar
  56. Laikhtman, D. L.: 1964, Physics of the Boundary Layer of the Atmosphere, Israel Program for Scientific Translations, Jerusalem, 200 pp.Google Scholar
  57. Lettau, H. H.: 1950, 'A Re-Examination of the “Leipzig Wind Profile” Considering Some Relations between Wind and Turbluence in the Frictional Layer', Tellus 2, 125–129.Google Scholar
  58. Lettau, H. H.: 1957, 'Windprofil, Innere Reibung und Energieumsatz in den unteren 500 m uber dem Meer', Beitr. Phys. Atmos. 30, 78–96.Google Scholar
  59. Lettau, H. H.: 1959, 'Wind Profile, Surface Stress and Geostrophic Drag Coefficients in the Atmospheric Surface Layer', Adv. Geophys. 6, 241–257.Google Scholar
  60. Lettau, H. H.: 1962, 'Theoretical Wind Spirals in the Boundary Layer of a Barotropic Atmosphere', Beitr. Phys. Atmos. 35, 195–212.Google Scholar
  61. Lettau, H. H. and Hoeber, H.: 1964, 'Ñber die Bestimmung der Höhenverteilung von Schubspannung und Austauschkoeffizient in der Atmosphärishen Reibungsschicht', Beitr. Phys. Atmos. 37, 105–118.Google Scholar
  62. Luthardt, H. and Hasse, L.: 1981, 'On the Relationship between Surface and Geostrophic Wind in the Region of the German Bight', Contr. Atmos. Phys. 54, 222–237.Google Scholar
  63. Mason, P. J. and Thomson, D. J.: 1987, 'Large Eddy Simulation of the Neutral-Static-Stability Planetary Boundary Layer', Quart. J. Roy. Meteorol. Soc. 113, 413–443.Google Scholar
  64. Mast, G.: 1978, 'Beiträge zur Meteorologie eines Steppengebietes (Tsumeb/S.W.A.). 10. Mitteilung: Universelle Profile der atmosphärischen Grenzschicht in der Trockenzeit', Meteorol. Rdsch. 31, 97–111.Google Scholar
  65. Melgarejo, J. W. and Deardorff, J. W.: 1974, 'Stability Functions for the Boundary-Layer Resistance Laws Based upon Observed Boundary-Layer Heights', J. Atmos. Sci. 31, 1324–1333.Google Scholar
  66. Melgarejo, J. W. and Deardorff, J. W.: 1975, 'Revision to “Stability Functions for the Boundary-Layer Resistance Laws Based upon Observed Boundary-Layer Heights”', J. Atmos. Sci. 32, 837–839.Google Scholar
  67. Mellor, G. L. and Yamada, T.: 1982: 'Development of a Turbulence Closure Model for Geophysical Fluid Problems', Rev. Geophys. Space Phys. 20, 851–875.Google Scholar
  68. Mildner, P.: 1932, 'Ñber die Reibung in einer speziellen Luftmasse', Beitr. Phys. Atmos. 19, 151–158.Google Scholar
  69. Miles, J.: 1994, 'Analytical Solutions for the Ekman Layer', Boundary-Layer Meteorol. 67, 1–10.Google Scholar
  70. Mizuma, M. and Iwamoto, S.: 1982, 'Wind Structure of the Boundary Layer over the Tropical Ocean', J. Meteorol. Soc. Japan 60, 1273–1283.Google Scholar
  71. Nicholls, S.: 1985, 'Aircraft Observations of the Ekman Layer during the Joint Air-Sea Interaction Experiment', Quart. J. Roy. Meteorol. Soc. 111, 391–426.Google Scholar
  72. Prandtl, L. and Tollmien, W.: 1924, 'Die Windverteilung über dem Erdboden, errechnet aus den Gesetzen der Rohrströmung', Z. Geophys. 1, 47–55.Google Scholar
  73. Rossby, C. G. and Montgomery, R. B.: 1935, 'The Layers of Frictional Influence in Wind and Ocean Currents', Papers Phys. Oceanogr. Meteorol. 3(3), 101 pp.Google Scholar
  74. Sheppard, P. A. and Omar, M. H.: 1952, 'The Wind Stress over the Ocean from Observations in the Trades', Quart. J. Roy. Meteorol. Soc. 78, 583–589.Google Scholar
  75. Sheppard, P. A., Charnock, H., and Francis, J. R. D.: 1952, 'Observations on the Westerlies over the Sea', Quart. J. Roy. Meteorol. Soc. 78, 563–582.Google Scholar
  76. Sisterson, D. L., Wesely, M. L., Coulter, R. L., Hart, R. L., Yamada, T., Hicks, B. B., Hess, P. E., Cook, D. R., Shannon, J. D., and Zerbe, G. A.: 1983, The Rush Field Experiments: Growth and Initial Decay of the Mixed Layer over an Autumn Landscape, ANL/RER-83-1, Argonne National Laboratory, Argonne, IL., available from NTIS, Springfield, VA, 30 pp. + appendices.Google Scholar
  77. Taylor, G. I.: 1915, 'Eddy Motion in the Atmosphere', Phil. Trans. Roy. Soc. London A215, 1–26.Google Scholar
  78. Walmsley, J. L.: 1992, 'Proposal for New PBL Resistance Laws for Neutrally-Stratified Flow', Boundary-Layer Meteorol. 60, 271–306.Google Scholar
  79. Wippermann, F.: 1970, 'The Two Constants in the Resistance Law for a Neutral Barotropic Boundary Layer of the Atmosphere', Beitr. Phys. Atmos. 43, 133–140.Google Scholar
  80. Wippermann, F.: 1972, 'Empirical Formulae for the Universal Functions Mm(µ) and N(µ) in the Resistance Law for a Barotropic and Diabatic Planetary Boundary Layer', Beitr. Phys. Atmos. 45, 305–311.Google Scholar
  81. Wyngaard, J. C., Cote, O. R., and Rao, K. S.: 1974, 'Modeling the Atmospheric Boundary Layer', Adv. Geophys. 18A, 193–211.Google Scholar
  82. Xu, D. and Taylor, P. A.: 1997a, An E-∈-ℓ Turbulence Closure Scheme for Planetary Boundary-Layer Models: The Neutrally Stratified Case', Boundary-Layer Meteorol. 84, 247–266.Google Scholar
  83. Xu, D. and Taylor, P.A.: 1997b, 'On Turbulence Closure Constants for Atmospheric Boundary-Layer Modelling: Neutral Stratification', Boundary-Layer Meteorol. 84, 267–287.Google Scholar
  84. Yamada, T.: 1976, 'On the Similarity Functions A, B and C of the Planetary Boundary Layer', J. Atmos. Sci. 33, 781–793.Google Scholar
  85. Zilitinkevich, S. S.: 1967, 'On Dynamic and Thermal Interaction between the Atmosphere and the Ocean', Izv. Atmos. Oceanic Phys. 3, 1067-1077.Google Scholar
  86. Zilitinkevich, S. S.: 1989, 'Velocity Profiles, the Resistance Law and the Dissipation Rate of Mean Flow Kinetic Energy in a Neutrally and Stably Stratified Planetary Boundary Layer', Boundary-Layer Meteorol. 46, 367–387.Google Scholar
  87. Zilitinkevich, S. S. and Chalikov, D. V.: 1968, 'On the Resistance and Heat/Moisture Transfer Laws in Interaction between the Atmosphere and the Underlying Surface', Izv. Atmos. Oceanic Phys. 4, 765–772.Google Scholar
  88. Zilitinkevich, S. S., Laikhtman, D. L., and Monin, A. S.: 1967, 'Dynamics of the Boundary Layer in the Atmosphere', Izv. Atmos. Oceanic Phys.3, 297–333.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • G. D. Hess
    • 1
  • J. R. Garratt
    • 2
  1. 1.Bureau of Meteorology Research CentreMelbourneAustralia
  2. 2.CSIRO Atmospheric ResearchAspendaleAustralia

Personalised recommendations