Origins of life and evolution of the biosphere

, Volume 32, Issue 3, pp 195–208

The Cold Origin of Life: A. Implications Based On The Hydrolytic Stabilities Of Hydrogen Cyanide And Formamide

  • Shin Miyakawa
  • H. James Cleaves
  • Stanley L. Miller


It has been suggested that hydrogen cyanide(HCN) would not have been present in sufficient concentrationto polymerize in the primitive ocean to produce nucleic acidbases and amino acids. We have measured the hydrolysis ratesof HCN and formamide over the range of 30–150 °C and pH 0–14,and estimated the steady state concentrations in theprimitive ocean. At 100 °C and pH 8, the steady stateconcentration of HCN and formamide were calculated to be7 × 10-13 M and 1 × 10-15 M, respectively. Thus, itseems unlikely that HCN could have polymerized in a warmprimitive ocean. It is suggested that eutectic freezing mighthave been required to have concentrated HCN sufficiantly forit to polymerize. If the HCN polymerization was important forthe origin of life, some regions of the primitive earth mighthave been frozen.

ammonium cyanide chemical evolution cold origin of life formamide frozen earth hydrogen cyanide polymerization hydrolysis rate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anders, E.: 1989, Pre-biotic Organic Matter from Comets and Asteroids, Nature 342, 255–257.Google Scholar
  2. Arrhenius, T., Arrhenius, G. and Paplawsky, W.: 1994, Archean Geochemistry of Formaldehyde and Cyanide and the Oligomerization of Cyanohydrin, Origins Life Evol. Biosphere 24, 1–17.Google Scholar
  3. Arrhenius, G., Bada, J. L., Joyce, G. F., Lazcano, A., Miller, S., and Orgel, L. E.: 1999, Origin and Ancestor: Separate Environments, Science 283, 792.Google Scholar
  4. Arrhenius, G., Baldridge, K. K., Richards-Gross, S., and Siegel, J. S.: 1997, Glycolonitrile Oligomerization: Structure of Isolated Oxazolines, Potential Heterocycles on the Early Earth, J. Org. Chem. 62, 5522–5525.Google Scholar
  5. Bada, J. L., Bigham, C. and Miller, S. L.: 1994, Impact Melting of Frozen Oceans on the Early Earth: Implications for the Origin of Life, Proc. Natl. Acad. Sci. USA 91, 1248–1250.Google Scholar
  6. Bada, J. L. and Miller, S. L.: 1968, Ammonium Ion Concentration in the Primitive Ocean, Science 159, 423–425.Google Scholar
  7. Basiuk, V. A. and Navarro-Gonzalez, R.: 1998, Pyrolytic Behavior of Amino Acids and Nucleic Acid Bases: Implications for Their Survival during Extraterrestrial Delivery, Icarus 134, 269–278.Google Scholar
  8. Caldeira, K. and Kasting, J. F.: 1992, Susceptibility of the Early Earth to Irreversible Glaciation Caused by Carbon Dioxide Clouds, Nature 359, 226–228.Google Scholar
  9. Chameides, W. L. and Walker, J. C. G.: 1981, Rates of Fixation by Lightning of Carbon and Nitrogen in Possible Primitive Atmospheres, Origins Life 11, 291–302.Google Scholar
  10. Chyba, C. F.: 1990, Impact Delivery and Erosion of Planetary Oceans in the Early Inner Solar System, Nature 343, 129–133.Google Scholar
  11. Chyba, C. and Sagan, C.: 1992, Endogenous Production, Exogenous Delivery and Impact-Shock Synthesis of Organic Molecules: An Inventory for the Origins of Life, Nature 355, 125–132.Google Scholar
  12. Chyba, C. F., Thomas, P. J., Brookshaw, L., and Sagan, C.: 1990, Cometary Delivery of Organic Molecules to the Early Earth, Science 249, 366–373.Google Scholar
  13. Cicerone, R. J. and Zellner, R.: 1983, The Atmospheric Chemistry of Hydrogen Cyanide (HCN), J. Geophys. Res. 88, 10689–10696.Google Scholar
  14. Cody, G. D., Boctor, N. Z., Filley, T. R., Hazen, R. M., Scott, J. H., Sharma, A., and Yoder, H. S. Jr.: 2000, Primordial Carbonylated Iron-Sulfur Compounds and the Synthesis of Pyruvate, Science 289, 1337–1340.Google Scholar
  15. Corliss, J. B., Baross, J. A. and Hoffman, S. E.: 1981, An Hypothesis Concerning the Relationship between Submarine Hot Springs and the Origin of Life on Earth, Oceanologica Acta Supplement to Vol. 4, 59–69.Google Scholar
  16. Ferris, J. P. and Hagan, W. J., Jr: 1984, HCN and Chemical Evolution: The Possible Role of Cyano Compounds in Prebiotic Synthesis, Tetrahedron 40, 1093–1120.Google Scholar
  17. Forterre, P.: 1996, A Hot Topic: The Origin of Hyperthermophiles, Cell 85, 789–792.Google Scholar
  18. Galtier, N., Tourasse, N. and Gouy, M.: 1999, A Nonhyperthermophilic Common Ancestor to Extant Life Forms, Science 283, 220–221.Google Scholar
  19. Hine, J., King, R. S.-M., Midden, W. R., and Sinha, A.: 1981, Hydrolysis of Formamide at 80 °C and pH 1-9, J. Org. Chem. 46, 3186–3189.Google Scholar
  20. Huber, C. and Wächtershäuser, G.: 1997, Activated Acetic Acid by Carbon Fixation on (Fe, Ni)S Under Primordial Conditions, Science 276, 245–247.Google Scholar
  21. Huber, C. and Wächtershäuser, G.: 1998, Peptides by Activation of Amino Acids with CO on (Ni, Fe)S Surfaces: Implications for the Origin of Life, Science 281, 670–672.Google Scholar
  22. Imai, E., Honda, H., Hatori, K., Brack, A., and Matsuno, K.: 1999, Elongation of Oligopeptides in a Simulated Submarine Hydrothermal System, Science 283, 831–833.Google Scholar
  23. Karhu, J. and Epstein, S.: 1986, The Implication of the Oxygen isotope Records in Coexisting Cherts and Phosphates, Geochim. Cosmochim. Acta 50, 1745–1756.Google Scholar
  24. Kasting, J. F. and Ackerman, T. P.: 1986, Climatic Consequences of Very High Carbon Dioxide Levels in the Earth's Early Atmosphere, Science 234, 1383–1385.Google Scholar
  25. Keefe, A. D. and Miller, S. L.: 1996, Was Ferrocyanide a Prebiotic Reagent?, Origins Life Evol. Biosphere 26, 111–129.Google Scholar
  26. Krieble, V. K. and McNally, J. G.: 1929, The Hydrolysis of Hydrogen Cyanide by Acids, J. Am. Chem. Soc. 51, 3368–3375.Google Scholar
  27. Krieble, V. K. and Noll, C. I.: 1939, The Hydrolysis of Nitriles with Acids, J. Am. Chem. Soc. 61, 560–563.Google Scholar
  28. Krieble, V. K. and Peiker, A. L.: 1933, The Hydrolysis of Hydrogen Cyanide by Acids. II, J. Am. Chem. Soc. 55, 2326–2331.Google Scholar
  29. Lake, J. A.: 1988, Origin of the Eukaryotic Nucleus Determined by Rate-Invariant Analysis of rRNA Sequences, Nature 331, 184–186.Google Scholar
  30. Levy, M., Miller, S. L. and Oró, J.: 1999, Production of Guanine from NH4CN Polymerizations, J. Mol. Evol. 49, 165–168.Google Scholar
  31. Levy, M., Miller, S. L., Brinton, K., and Bada, J. L.: 2000, Prebiotic Synthesis of Adenine and Amino Acids under Europa-like Conditions, Icarus 145, 609–613.Google Scholar
  32. Maher, K. A. and Stevenson, D. J.: 1988, Impact Frustration of the Origin of Life, Nature 331, 612–614.Google Scholar
  33. Marsh, J. D. F. and Martin, M. J.: 1957, The Hydrolysis and Polymerization of Hydrogen Cyanide in Alkaline Solutions, J. Appl. Chem. 7, 205–209.Google Scholar
  34. Miller, S. L. and Bada, J. L.: 1988, Submarine Hot Springs and the Origin of Life, Nature 334, 609–611.Google Scholar
  35. Miller, S. L. and Lazcano, A.: 1995, The Origin of Life-Did It Occur at High Temperatures?, J. Mol. Evol. 41, 689–692.Google Scholar
  36. Miller, S. L. and Orgel, L. E.: 1974, The Origins of Life on the Earth, Prentice-Hall, Inc., New Jersey.Google Scholar
  37. Mittal, S., Gupta, K. S. and Gupta, Y. K.: 1981, Kinetics of Carboxylic Acid Catalysed Hydrolysis of Formamide: Evidence for Specific Hydronium Ion Catalysis, Indian J. Chem. 20A, 1220–1221.Google Scholar
  38. Mittal, S., Gupta, K. S. and Gupta, Y. K.: 1982, Kinetics & Mechanism of Acid Hydrolysis of Formamide, Acetamide, Propanamide & Butanamide over an Extended Concentration Range: Kinetic Evidence for Fast Protonation Pre-equilibrium, Indian J. Chem. 21A, 357–360.Google Scholar
  39. Miyakawa, S., Cleaves, H. J. and Miller, S. L.: The Cold Origin of Life: B. Implications Based on Pyrimidines and Purines Produced from Frozen Ammonium Cyanide Solutions, Origins Life Evol. Biosphere 32, 209–218.Google Scholar
  40. Miyakawa, S., Murasawa, K., Kobayashi, K., and Sawaoka, A. B.: 1999a, Cytosine and Uracil Synthesis by Quenching with High-Temperature Plasma, J. Am. Chem. Soc. 121, 8144–8145.Google Scholar
  41. Miyakawa, S., Murasawa, K., Kobayashi, K., and Sawaoka, A. B.: 2000, Abiotic Synthesis of Guanine with High-Temperature Plasma, Origins Life Evol. Biosphere 30, 557–566.Google Scholar
  42. Miyakawa, S., Tamura, H., Sawaoka, A. B., and Kobayashi, K.: 1998, Amino Acid Synthesis from an Amorphous Substance Composed of Carbon, Nitrogen, and Oxygen, Appl. Phys. Lett. 72, 990–992.Google Scholar
  43. Miyakawa, S., Sawaoka, A. B., Ushio, K., and Kobayashi, K.: 1999b, Mechanisms of Amino Acid Formation Using Optical Emission Spectroscopy, J. Appl. Phys. 85, 6853–6857.Google Scholar
  44. Ochiai, M., Marumoto, R., Kobayashi, S., Shimazu, H., and Morita, K.: 1968, A Facile One-Step Synthesis of Adenine, Tetrahedron 24, 5731–5737.Google Scholar
  45. Oró, J.: 1960, Synthesis of Adenine from Ammonium Cyanide, Biochem. Biophys. Res. Commun. 2, 407–412.Google Scholar
  46. Oró, J.: 1961, Comets and the Formation of Biochemical Compounds on the Primitive Earth, Nature 190, 389–390.Google Scholar
  47. Pace, N. R.: 1991, Origin of Life-Facing Up to the Physical Setting, Cell 65, 531–533.Google Scholar
  48. Philipp, M.: 1977, Spontaneous Phosphorylation of Nucleosides in Formamide-Ammonium Phosphate Mixtures, Naturwiss. 64, 273.Google Scholar
  49. Rabinovitch, B. S. and Winkler, C. A.: 1942, The Hydrolysis of Aliphatic Nitriles in Concentrated Hydrochloric Acid Solutions, Canad. J. Res. 20B, 221–230.Google Scholar
  50. Robinson, R. A. and Stokes, R. H.: 1959, Electrolyte Solutions, Butterworth, London.Google Scholar
  51. Salem, S. M. and Sidahmed, I. M.: 1985, Solvent Effect on the Kinetic Study of the Alkaline Hydrolysis of Formamide in Acetone-Water Mixtures, J. Chin. Chem. Soc. 32, 451–456.Google Scholar
  52. Salem, S. M. and Sidahmed, I. M.: 1986, The Acid Hydrolysis of Formamide in Water-Acetone Mixtures, Egypt. J. Chem. 29, 521–528.Google Scholar
  53. Sanchez, R. A., Ferris, J. P. and Orgel, L. E.: 1967, Studies in Prebiotic Synthesis II. Synthesis of Purine Precursors and Amino Acids from Aqueous Hydrogen Cyanide, J. Mol. Biol. 30, 223–253.Google Scholar
  54. Schlesinger, G. and Miller, S. L.: 1973, Equilibrium and Kinetics of Glyconitrile Formation in Aqueous Solution, J. Am. Chem. Soc. 95, 3729–3735.Google Scholar
  55. Schlesinger, G. and Miller, S. L.: 1983, Prebiotic Synthesis in Atmospheres Containing CH4, CO, and CO2 II. Hydrogen Cyanide, Formaldehyde and Ammonia, J. Mol. Evol. 19, 383–390.Google Scholar
  56. Shock, E. L.: 1990, Geochemical Constraints on the Origin of Organic Compounds in Hydrothermal Systems, Origins Life Evol. Biosphere 20, 331–367.Google Scholar
  57. Skundric, B. and Penavin, J.: 1984, Acid Catalysed Amide Hydrolysis in Water-Ethanol Mixtures. Medium Interactions Study, Zeitschrift Physikalische Chemie Neue Folge 141, 29–39.Google Scholar
  58. Sleep, N. H., Zahnle, K. J., Kasting, J. F., and Morowitz, H. J.: 1989, Annihilation of Ecosystems by Large Asteroid Impacts on the Early Earth, Nature 342, 139–142.Google Scholar
  59. Stribling, R. and Miller, S. L.: 1986, Energy Yields for Hydrogen Cyanide and Formaldehyde Syntheses: The HCN and Amino Acid Concentrations in the Primitive Ocean, Origins Life 17, 261–273.Google Scholar
  60. Tan, T. C. and Teo, W. K.: 1987, Destruction of Cyanides by Thermal Hydrolysis, Plat. and Surf. Fin. 74 (4), 70–73.Google Scholar
  61. Voet, A. B. and Schwartz, A. W.: 1982, Uracil Synthesis via HCN oligomerization, Origins Life 12, 45–49.Google Scholar
  62. Walker, J. C. G.: 1985, Carbon Dioxide on the Early Earth, Origins Life 16, 117–127.Google Scholar
  63. White, R. H.: 1984, Hydrolytic Stability of Biomolecules at High Temperatures and Its Implication for Life at 250 °C, Nature 310, 430–432.Google Scholar
  64. Yamada, H., Hirobe,M., Higashiyama, K., Takahashi, H., and Suzuki, K. T.: 1978, Detection of 13C-15N Coupled Units in Adenine Derived from Doubly Labeled Hydrogen Cyanide or Formamide, J. Am. Chem. Soc. 100, 4617–4618.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Shin Miyakawa
    • 1
  • H. James Cleaves
    • 3
  • Stanley L. Miller
    • 3
  1. 1.Department of Chemistry and Biotechnology, Faculty of EngineeringYokohama National UniversityYokohamaJapan
  2. 2.Department of Chemistry, Cogswell LaboratoryRensselaer Polytechnic InstituteTroyUSA
  3. 3.Department of Chemistry and BiochemistryUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations