Advertisement

Journal of Neurocytology

, Volume 30, Issue 7, pp 551–592 | Cite as

Neurochemical anatomy of the zebrafish retina as determined by immunocytochemistry

  • Stephen Yazulla
  • Keith M. Studholme
Article

Abstract

The zebrafish retina is rapidly becoming a major preparation for the study of molecular genetic mechanisms underlying neural development and visual behavior. Studies utilizing retinal mutants would benefit by the availability of a data base on the distribution of neurotransmitter systems in the wild-type fish. To this end, the neurochemical anatomy of the zebrafish retina was surveyed by light microscopic immunocytochemistry. An extensive series of 60 separate antibodies were used to describe the distribution of major transmitter systems and a variety of neuron-associated membrane channels and proteins. These include markers (i.e., antibodies against enzymes, receptors, transporters) for transmitters: GABA, glycine, glutamate, biogenic amines, acetylcholine, cannabinoids and neuropeptides; as well as a sample of voltage-gated channels and synapse associated membrane proteins. Discussion of the comparative localization of these antibodies is restricted to other teleost fishes, particularly goldfish. Overall, there was great similarity in the distribution of the various markers, as might be expected. However, there were some notable differences, including several antibodies that did not label zebrafish at all, even though goldfish retinas that were processed in parallel, labeled beautifully. This survey is extensive, but not exhaustive, and hopefully will serve as a valuable resource for future studies of the zebrafish retina.

Keywords

Retina Biogenic Amine Teleost Fish Neural Development Associate Membrane Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akopian, A., Johnson, J., Gabriel, R., Brecha, N. & Witkovsky, P. (2000) Somatostatin modulates voltage-gated K+ and Ca2+ currents in rod and cone photoreceptors of the salamander retina. Journal of Neuroscience 20, 929–936.Google Scholar
  2. Altschuler, R. A., Betz, H., Parakkal, M. A., Reeks, K. A. & Wenthold, R. J. (1986) Identification of glycinergic synapses in the cochlear nucleus through immunocytochemical localization of the postsynaptic receptor. Brain Research 369, 316–320.Google Scholar
  3. Baier, H. (2000) Zebrafish on the move:Towards a behaviorgenetic analysis of vertebrate vision. Current Opinion in Neurobiology 10, 451–455.Google Scholar
  4. Baldridge, W. H. & Ball, A. K. (1993) A new type of interplexiform cell in the goldfish retina is PNMT-immunoreactive. Neuroreport 4, 1015–1018.Google Scholar
  5. Bekele-Arcuri, Z., Matos, M. F., Manganas, L., Strassle, B. W., Monaghan, M. M., Rhodes, K. J. & Trimmer, J. S. (1996) Generation and characterization of subtype-specific monoclonal antibodies to K+ channel α-and β-subunit polypeptides. Neuropharmacology 35, 851–865.Google Scholar
  6. Bilotta, J. (2001) The zebrafish as a model visual system. International Jounal of Developmental Neuroscienc 19, 621–629.Google Scholar
  7. Blank, H., Muller, B. & Korf, H. (1997) Comparative investigations of the neuronal apparatus in the pineal organ and retina of the rainbow trout: Immunocytochemical demonstration of neurofilament 200-kDa and neuropeptide Y, and tracing with DiI. Cell & Tissue Research 288, 417–425.Google Scholar
  8. Blazynski, C. & Perez, M.-T. R. (1992) Neuroregulatory functions of adenosine in the retina. Progress in Retinal Research 11, 293–332.Google Scholar
  9. Blute, T. A., Mayer, B. & Eldred, W. D. (1997) Immunocytochemical and histochemical localization of nitric oxide synthase in the turtle retina. Visual Neuroscience 14, 717–729.Google Scholar
  10. Bohn, M. C., Dreyfus, C. F., Friedman, W. J. & Markie, K. A. (1987) Glucocorticoid effects on phenylethanolamine N-methyltransferase (PNMT) in explants of embryonic rat medulla oblongata. Developmental Brain Research 37, 257–266.Google Scholar
  11. Brandon, C. (1985) Retinal GABA neurons: Localization in vertebrate species using an antiserum to rabbit brain glutamate decarboxylase. Brain Research 344, 286–295.Google Scholar
  12. Brecha, N. (1983) Neurotransmitters: Histochemical and biochemical studies. In Chemical Neuroanatomy (edited by Emson, P. C.) pp. 85–129. New York: Raven Press.Google Scholar
  13. Brecha, N., Sharma, S. C. & Karten, H. J. (1981) Localization of substance P like immunoreactivity in the adult and developing goldfish retina. Neuroscience 6, 2737–2746.Google Scholar
  14. Brecha, N. C. (1992) Expression of GABAA receptors in the vertebrate retina. In Progress in Brain Research, Vol. 90 (edited by Mize, R. R., Marc, R. E. & Sillito, A. M.) pp. 3–28. New York: Elsevier Science.Google Scholar
  15. Brockerhoff, S. E. (2001) Retinal disease in vertebrates. In Concepts and Challenges in Retinal Biology: A Tribute to John E. Dowling (edited by Kolb, H., Ripps, H. & Wu, S.) Amsterdam: Elsevier; Progress in Brain Research 131, 629-639.Google Scholar
  16. Brockerhoff, S. E., Hurley, J. B., Janssenbienhold, U., Neuhauss, S. C. F., Driever, W. & Dowling, J. E. (1995) A behavioral screen for isolating zebrafish mutants with visual system defects. Proceedings of the National Academy of Science of the United States of America 92, 10545–10549.Google Scholar
  17. Bruun, A., Ehinger, B. & Sytsma, V. M. (1984) Neurotransmitter localization in the skate retina. Brain Research 295, 233–248.Google Scholar
  18. Caminos, E., Velasco, A., Jarrin, M., Lillo, C., Jimeno, D., Aijon, J. & Lara, J. M. (2000) A comparative study of protein kinase C-like immunoreactive cells in the retina. Brain, Behavior & Evolution 56, 330–339.Google Scholar
  19. Cerda, J., Conrad, M., Markl, J., Brand, M. & Herrmann, H. (1998) Zebrafish vimentin: Molecular characterization, assembly properties and developmental expression. European Journal of Cell Biology 77, 175–187.Google Scholar
  20. Chang, Y.-C. & Gottlieb, D. I. (1988) Characterization of the proteins purified with monoclonal antibodies to glutamic acid decarboxylase. Journal of Neuroscience 8, 2123–2130.Google Scholar
  21. Connaughton, V. P., Behar, T. N., Liu, W. L. S. & Massey, S. C. (1999) Immunocytochemical localization of excitatory and inhibitory neurotransmitters in the zebrafish retina. Visual Neuroscience 16, 483–490.Google Scholar
  22. Dermietzel, R., Kremer, M., Paputsoglu, G., Stang, A., Skerrett, I. M., Gomes, D., Srinivas, M., Janssen-Bienhold, U., Weiler, R., Nicholson, B. J., Bruzzone, R. & Spray, D. C. (2000) Molecular and functional diversity of neural connexins in the retina. Journal of Neuroscience 20, 8331–8343.Google Scholar
  23. Di Marzo, V. & Deutsch, D. G. (1998) Biochemistry of the endogenous ligands of cannabinoid receptors. Neurobiology of Disease 5, 386–404.Google Scholar
  24. Dugandzija-Novakovic, S., Koszowski, A. G., Levinson, S. R. & Shrager, P. (1995) Clustering of Na channels and node of Ranvier formation in remyelinating axons. Journal of Neuroscience 15, 492–502.Google Scholar
  25. Easter, S. S. Jr. & Nicola, G. N. (1996) The development of vision in the zebrafish (Danio rerio). Developmental Biology 180, 646–663.Google Scholar
  26. Ehinger, B. & Perez, M. T. R. (1984) Autoradiography of nucleoside uptake into the retina. Neurochemistry International 6, 369–381.Google Scholar
  27. Ekman, R. & Tornqvist, K. (1985) Glucagon and VIP in the retina. Investigative Ophthalmology & Visual Science 26, 1405–1409.Google Scholar
  28. Enz, R., BrandstÄtter, J. H., WÄssle, H. & Bormann, J. (1996) Immunocytochemical localization of the GABAc receptor rho subunits in the mammalian retina. Journal of Neuroscience 16, 4479–4490.Google Scholar
  29. Ewert, M., De Blas, A. L., MÖhler, H. & Seeburg, P. H. (1992) Aprominent epitope on GABAA receptors is recognized by two different monoclonal antibodies. Brain Research 569, 57–62.Google Scholar
  30. Fadool, J. M. (2001) Understanding retinal cell fate determination through genetic manipulations. In Concepts and Challenges in Retinal Biology: A Tribute to John E. Dowling (edited by Kolb, H., Ripps, H. & Wu, S.) Amsterdam: Elsevier; Progress in Brain Research 131, 541-554.Google Scholar
  31. Famiglietti E. V. Jr., Kaneko, A. & Tachibana, M. (1977) Neuronal architecture of on and off pathways to ganglion cells in carp retina. Science 198, 1267–1269.Google Scholar
  32. Fletcher, E. L., Hack, I., BrandstÄtter, J. H. & WÄssle, H. (2000) Synaptic localization of NMDA receptor subunits in the rat retina. Journal of Comparative Neurology 420, 98–112.Google Scholar
  33. Foster, G. A., HÖkfelt, T., Coyle, J. T. & Goldstein, M. (1985) Immunohistochemical evidence for phenylethanolamine-N-methyltransferasepositive/ tyrosine hydroxylase-negative neurones in the retina and the posterior hypothalamus of the rat. Brain Research 330, 183–188.Google Scholar
  34. Gong, B., Rhodes, K. J., Bekele-arcuri, Z. & Trimmer, J. S. (1999) Type I and Type II Na+ channel alpha-subunit polypeptides exhibit distinct spatial and temporal patterning and association with auxiliary subunits in rat brain. Journal of Comparative Neurology 412, 342–352.Google Scholar
  35. Hamano, K., Kiyama, H., Emson, P. C., Manabe, R., Nakauchi, M. & Tohyama, M. (1990) Localization of two calcium binding proteins, calbindin (28 kD) and parvalbumin (12 kD), in the vertebrate retina. Journal of Comparative Neurology 302, 417–424.Google Scholar
  36. Hammang, J. P., Bohn, M. C. & Messing, A. (1992) Phenylethanolamine N-methyltransferase (PNMT)-expressing horizontal cells in the rat retina: A study employing double-label immunohistochemistry. Journal of Comparative Neurology 316, 383–389.Google Scholar
  37. Haverkamp, S. & WÄssle, H. (2000) Immunocytochemical analysis of the mouse retina. Journal of Comparative Neurology 424, 1–23.Google Scholar
  38. Hoch, W., Becker, C.-M., Greeningloh, G. & Betz, H. (1991) Mapping of antigenic epitopes on the α1-subunit of the inhibitory glycine receptor. Biochemistry 30, 42–47.Google Scholar
  39. Holzschuh, J., Ryu, S., Aberger, F. & Driever, W. (2001) Dopamine transporter expression distinguishes dopaminergic neurons from other catecholaminergic neurons in the developing zebrafish embryo. Mechanisms of Development 101, 237–243.Google Scholar
  40. Hughes, T. E., GrÜnert, U. & Karten, H. J. (1991) GABAA receptors in the retina of the cat: An immunohistochemical study of wholemounts, sections, and dissociated cells. Visual Neuroscience 6, 229–238.Google Scholar
  41. Imboden, M., Devignot, V., Korn, H. & Goblet, C. (2001) Regional distribution of glycine receptor messenger RNA in the central nervous system of zebrafish. Neuroscience 103, 811–830.Google Scholar
  42. Janssen-Bienhold, U., Dermietzel, R. & Weiler, R. (1998) Distribution of Connexin43 immunoreactivity in the retinas of different vertebrates. Journal of Comparative Neurology 396, 310–321.Google Scholar
  43. Janssen-Bienhold, U., Schultz, K., Gellhaus, A., Schmidt, P., AmmermÜller, J. & Weiler, R. (2001) Identification and localization of connexin26 within the photoreceptor-horizontal cell synaptic complex. Visual Neuroscience 8, 169–178.Google Scholar
  44. Jentsch, T. J. (1996) Chloride channels: A molecular perspective. Current Opinion in Neurobiology 6, 303–310.Google Scholar
  45. Johnson, J., Chen, T. K., Rickman, D. W., Evans, C. & Brecha, N. (1996) Multiple γ-aminobutyric acid plasma membrane transporters (GAT 1, GAT 2, GAT 3) in the rat retina. Journal of Comparative Neurology 375, 212–224.Google Scholar
  46. Jones, P. A. & Schechter, N. (1987) Distribution of specific intermediate-filament proteins in the goldfish retina. Journal of Comparative Neurology 266, 112–121.Google Scholar
  47. Kamermans, M., Fahrenfort, I., Schultz, K., Janssen-Bienhold, U., Sjoerdsma, T. & Weiler, R. (2001) Hemichannel-mediated inhibition in the outer retina. Science 292, 1178–1180.Google Scholar
  48. Kaufman, D. L., Houser, C. R. & Tobin, A. J. (1991) Two forms of the-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. Journal of Neurochemistry 56, 720–723.Google Scholar
  49. Kawamata, K., Ohtsuka, T. & Stell, W. K. (1990) Electron microscopic study of immunocytochemically labeled centrifugal fibers in the goldfish retina. Journal of Comparative Neurology 293, 655–664.Google Scholar
  50. Keyser, K. T., Karten, H. J., Katz, B. & Bohn, M. C. (1987) Catecholaminergic horizontal and amacrine cells in the ferret retina. Journal of Neuroscience 7, 3996–4004.Google Scholar
  51. Klooster, J., Studholme, K. M. & Yazulla, S. (2001) Localization of the AMPA subunit GluR2 in the outer plexiform layer of goldfish retina. Journal of Comparative Neurology 441, 155–167.Google Scholar
  52. Kolb, H., Linberg, K. A. & Fisher, S. K. (1992) Neurons of the human retina: A Golgi study. Journal of Comparative Neurology 318, 147–187.Google Scholar
  53. Koulen, P., BrandstÄtter, J. H., KrÜger, S., Enz, R., Bormann, J. & WÄssle, H. (1997) Immunocytochemical localization of the GABAC receptor rho subunits in the cat, goldfish, and chicken retina. Journal of Comparative Neurology 380, 520–532.Google Scholar
  54. Koulen, P., Fletcher, E. L., Craven, S. E., Bredt, D. S. & WÄssle, H. (1998) Immunocytochemical localization of the postsynaptic density protein PSD-55 in the mammalian retina. Journal of Neuroscience 18, 10136–10149.Google Scholar
  55. Koulen, P., Kuhn, R., WÄssle, H. & BrandstÄtter, J. H. (1999) Modulation of the intracellular calcium concentration in photoreceptor terminals by a presynaptic metabotropic glutamate receptor. Proceedings of the National Academy of Sciences of the USA 96, 9909–9914.Google Scholar
  56. Lam, D. M. K. (1975) Synaptic chemistry of identified cells in the vertebrate retina. Cold Spring Harbor Symposium Quantitative Biology 40, 571–579.Google Scholar
  57. Lambrecht, H.-G. & Koch, K.-W. (1991) A 26 kD calcium binding protein from bovine rod outer segments as modulator of photoreceptor guanylate cyclase. EMBO J 10, 793–798.Google Scholar
  58. Larison, R. D. & Bremiller, R. (1990) Early onset of phenotype and cell patterning in the embryonic zebrafish retina. Development 109, 567–576.Google Scholar
  59. Lasater, E. M., Watling, K. J. & Dowling, J. E. (1983) Vasoactive intestinal peptide alters membrane potential and cyclic nucleotide levels in retinal horizontal cells. Science 221, 1070–1071.Google Scholar
  60. Li, H., Marshak, D. W., Dowling, J. E., & Lam, D. M. K. (1986) Colocalization of immunoreactive substance P and neurotensin in amacrine cells of the goldfish retina. Brain Research 366, 307–313.Google Scholar
  61. Li, L. (2001) Genetic and epigenetic analysis of visual system functions of zebrafish. In Concepts and Challenges in Retinal Biology: A Tribute to John E. Dowling (edited by Kolb, H., Ripps, H. & Wu, S.) Amsterdam: Elsevier; Progress in Brain Research 131, 555-563.Google Scholar
  62. Li, L. & Dowling, J. E. (2000) Effects of dopamine depletion on visual sensitivity of zebrafish. Journal of Neuroscience 20, 1893–1903.Google Scholar
  63. Lin, C.-T., Li, H.-Z. & Wu, J.-Y. (1983) Immunocytochemical localization of L-glutamate decarboxylase, gammaaminobutyric acid transaminase, cysteine sulfinic acid decarboxylase, aspartate aminotransferase and somatostatin in rat retina. Brain Research 270, 273–283.Google Scholar
  64. Lin, Z. S. & Yazulla, S. (1994a) Depletion of retinal dopamine increases brightness perception in goldfish. Visual Neuroscience 11, 683–693.Google Scholar
  65. Lin, Z. S. & Yazulla, S. (1994b) Heterogeneity of GABAA receptors in goldfish retina. Journal of Comparative Neurology 345, 429–439.Google Scholar
  66. Linser, P. J., Smith, K. & Angelides, K. (1985) A comparative analysis of glial and neuronal markers in the retina of fish: Variable character of horizontal cells. Journal of Comparative Neurology 237, 264–272.Google Scholar
  67. Mack, A. F., Germer, A., Janke, C. & Reichenbach, A. (1998) Muller (glial) cells in the teleost retina: Consequences of continuous growth. Glia 22, 306–313.Google Scholar
  68. Malicki, J. (2000) Harnessing the power of forward genetics-analysis of neuronal diversity and patterning in the zebrafish retina. Trends in Neurosciences 23, 531–541.Google Scholar
  69. Marc, R. E. & Cameron, D. A. (2001) A molecular phenotype atlas of the zebrafish retina. Journal of Neurocytology 30, 593–654.Google Scholar
  70. Marc, R. E. & Lam, D. M. K. (1981) Glycinergic pathways in the goldfish retina. Journal of Neuroscience 1, 152–165.Google Scholar
  71. Marc, R. E., Liu, W.-L. S., Scholz, K. & Muller, J. F. (1988) Serotonergic and serotonin-accumulating neurons in the goldfish retina. Journal of Neuroscience 8, 3427–3450.Google Scholar
  72. Marshak, D. W. (1992) Peptidergic neurons of teleost retinas. Visual Neuroscience 8, 137–144.Google Scholar
  73. Marshak, D. W. & Dowling, J. E. (1987) Synapses of cone horizontal cell axons in goldfish retina. Journal of Comparative Neurology 256, 430–443.Google Scholar
  74. Masu, M., Iwakabe, H., Tagawa, Y., Miyoshi, T., Yamashita, M., Fukada, Y., Sasaki, H., Hiroi, K., Nakamura, Y. & Shigemoto, R. (1995) Specific deficit of the ON response in visual transmission by targeted disruption of the mGlur6 gene. Cell 80, 757–765.Google Scholar
  75. Mathieu, M., Tagliafierro, G., Angelini, G. & Vallarino, M. (2001) Organization of vasoactive intestinal peptide-like immunoreactive system in the brain, olfactory organ and retina of the zebrafish, Danio rerio, during development. Brain Research 888, 235–247.Google Scholar
  76. Mccormack, C. A. & Mcdonnell, M. T. (1994) Abnormal dorsal light response in teleost fish after intraocular injection of 6-hydroxydopamine. Journal of Fish Biology 45, 515–525.Google Scholar
  77. Mcintosh, H. H., Song, C. & Howlett, A. C. (1998) CB1 cannabinoid receptor: Cellular regulation and distribution in N18TG2 neuroblastoma cells. Molecular Brain Research 53, 163–173.Google Scholar
  78. Mechoulam, R., Fride, E. & Di Marzo, V. (1998) Endocannabinoids. European Journal of Pharmacology 359, 1–18.Google Scholar
  79. Mora-Ferrer, C., Yazulla, S., Studholme, K. M. & Haak-Frendscho, M. (1999) Dopamine D1-receptor immunolocalization in goldfish retina. Journal of Comparative Neurology 411, 704–714.Google Scholar
  80. Muske, L. E., Dockray, G. J., Chohan, K. S. & Stell, W. K. (1987) Segregation of FMRF amide-immunoreactive efferent fibers from NPYimmunoreactive amacrine cells in goldfish retina. Cell & Tissue Research 247, 299–307.Google Scholar
  81. Neal, M. & Cunningham, J. (1994) Modulation by endogenous ATP of the light-evoked release of ACh from retinal cholinergic neurones. British Journal of Pharmacology 113, 1085–1087.Google Scholar
  82. Neal, M. J., Cunningham, J. R. & Dent, Z. (1998) Modulation of extracellular GABA levels in the retina by activation of glial P2X-purinoceptors. British Journal of Pharmacology 124, 317–322.Google Scholar
  83. Negishi, K., Kato, S., Teranishi, T., Kiyama, H., Katayama, Y. & Tohyama, M. (1985) Socalled interplexiform cells immunoreactive to tyrosine hydroxylase or somatostatin in rat retina. Brain Research 346, 136–140.Google Scholar
  84. Negishi, K. & Wagner, H. J. (1995) Differentiation of photoreceptors, glia, and neurons in the retina of the cichlid fish Aequidens pulcher;An immunocytochemical study. Developmental Brain Research 89, 87–102.Google Scholar
  85. Nelson, R., Janis, A. T., Behar, T. N. & Connaughton, V. P. (2001) Physiological responses associated with kainate receptor immunoreactivity in dissociated zebrafish retinal neurons: A voltage probe study. In Concepts and Challenges in Retinal Biology: A Tribute to John E. Dowling (edited by Kolb, H., Ripps, H. & Wu, S.) Amsterdam: Elsevier; Progress in Brain Research 131, 255-265.Google Scholar
  86. Neuhauss, S. C., Biehlmaier, O., Seeliger, M. W., Das, T., Kohler, K., Harris, W. A. & Baier, H. (1999) Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish. Journal of Neuroscience 19, 8603–8615.Google Scholar
  87. Nguyen-Legros, J., Martin-Martinelli, E., Simon, A., Denoroy, L. & Vigny, A. (1986) Colocalization of tyrosine-hydroxylase and phenylethanolamine-N-methyltransferase immunoreactivity in the rat retina: A re-examination using double labeling on semi-thin sections. Experimental Eye Research 43, 575–584.Google Scholar
  88. Nishimura, Y., Schwartz, M. L. & Rakic, P. (1986) GABA and GAD immunoreactivity of photoreceptor terminals in primate retina. Nature (London) 320, 753–756.Google Scholar
  89. Oertel, W. H., Schmechel, D. E., Tappaz, A. & Kopin, I. J. (1981) Production of a specific antiserum to rat brain glutamic acid decarboxylase by injection of an antigen-antibody complex. Neuroscience 6, 2689–2700.Google Scholar
  90. Osborne, N. N., Nicholas, D. A., Cuello, A. C. & Dockray, G. J. (1981) Localization of cholecystokinin immunoreactivity in amacrine cells of the retina. Neuroscience Letters 26, 31–35.Google Scholar
  91. Osborne, N. N., Nicholas, D. A., Dockray, G. J. & Cuello, A. C. (1982) Cholecystokinin and substance P immunoreactivity in retinas of rats, frogs, lizards and chicks. Experimental Eye Research 34, 639–649.Google Scholar
  92. Osborne, N. N., Patel, S., Terenghi, G., Allen, J. M., Polak, J. M. & Bloom, S. R. (1985) Neuropeptide Y (NPY)-like immunoreactive amacrine cells in retinas of frog and goldfish. Cell & Tissue Research 241, 651–656.Google Scholar
  93. Patrecelli, M. P., Lashuel, H. A., Giang, D. K., Kelly, J. W. & Cravatt, B. F. (1998) Comparative characterization of a wild type and transmembrane domain-deleted fatty acid amide hydrolase: Identification of the transmembrane domain as a site for oligomerization. Biochemistry 37, 15177–15187.Google Scholar
  94. Peng, Y. W., Blackstone, C. D. Huganir, R. L. & Yau, K. W. (1995) Distribution of glutamate receptor subtypes in the vertebrate retina. Neuroscience 66, 483–497.Google Scholar
  95. Peterson, R. E., Fadool, J. M., Mcclintock, J. & Linser, P. J. (2001) Muller cell differentiation in the zebrafish neural retina: Evidence of distinct early and late stages in cell maturation. Journal of Comparative Neurology 429, 530–540.Google Scholar
  96. Pfeiffer, F., Simler, R., Grenningloh, G. & Betz, H. (1984) Monoclonal antibodies and peptide mapping reveal structural similarities between the subunits of the glycine receptor of rat spinal cord. Proceedings of the National Academy of Science of the USA 81, 7224–7227.Google Scholar
  97. Pinelli, C., D'Aniello, B., Sordino, P., Meyer, D. L., Fiorentino, M. & Rastogi, R. K. (2000) Comparative immunocytochemical study of FMRFamide neuronal system in the brain of Brachydanio rerio and Acipenser ruthenus during development. Developmental Brain Research 119, 195–208.Google Scholar
  98. Richards, J. G., Schoch, P, Haring, P., Takacs, B. & Mohler, H. (1987) Resolving GABAA/benzodiazepine receptors: Cellular and subcellular localization in the CNS with monoclonal antibodies. Journal of Neuroscience 7, 1866–1876.Google Scholar
  99. Sandell, J. H., Martin, S. C. & Heinrich, G. (1994) The development of GABA immunoreactivity in the retina of the zebrafish (Brachydanio rerio). Journal of Comparative Neurology 345, 596–601.Google Scholar
  100. Santos, P. F., Caramelo, O. L., Carvalho, A. P. & Duarte, C. B. (2000) Adenosine A1 receptors inhibit Ca2+ channels coupled to the release of ACh, but not of GABA, in cultured retina cells. Brain Research 852, 10–15.Google Scholar
  101. SassoÈ-Pognetto, M., Kirsch, J., GrÜnert, U., Greferath, U., Fritschy, J. M., MÖhler, H., Betz, H. & WÄssle, H. (1995) Colocalization of gephyrin and GABAA-receptor subunits in the rat retina. Journal of Comparative Neurology 357, 1–14.Google Scholar
  102. Schoch, P., HÄring, P., Takacs, B., StÄhli, C. & MÖhler, H. (1984) A GABA/benzodiazepine receptor complex from bovine brain: Purification, reconstitution and immunological characterization. Journal of Receptor Research 4, 189–200.Google Scholar
  103. Schultz, K., Goldman, D. J., Ohtsuka, T., Hirano, J., Barton, L. & Stell, W. K. (1997) Identification and localization of an immunoreactive AMPA-type glutamate receptor subunit (GluR4) with respect to identified photoreceptor synapses in the outer plexiform layer of goldfish retina. Journal of Neurocytology 26, 651–666.Google Scholar
  104. Schultz, K., Janssen-Bienhold, U. & Weiler, R. (2001) Selective synaptic distribution of AMPA and kainate receptor subunits in the outer plexiform layer of the carp retina. Journal of Comparative Neurology 435, 433–449.Google Scholar
  105. Sheng, M., Tsaur, M. L., Jan, Y. N. & Jan, L. Y. (1992) Subcellular segregation of two A-type K+ channel proteins in rat central neurons. Neuron 9, 271–284.Google Scholar
  106. Stell, W. K., Ishida, A. T. & Lightfoot, D. O. (1977) Structural basis for On-and Off-center responses in retinal bipolar cells. Science 198, 1269–1271.Google Scholar
  107. Stell, W. K., Walker, S. E., Chohan, K. S. & Ball, A. K. (1984) The goldfish nervous terminalis: A luteinizing hormone-releasing hormone and molluscan cardioexcitatory peptide immunoreactive olfactoretinal pathway. Proceedings of the National Academy of Science of the USA 81, 940–944.Google Scholar
  108. Straiker, A., Stella, N., Piomelli, D., Mackie, K., Karten, H. J. & Maguire, G. (1999) Cannabinoid CB1 receptors and ligands in vertebrate retina: Localization and function of an endogenous signaling system. Proceedings of the National Academy of Sciences of the USA 96, 14565–14570.Google Scholar
  109. Studholme, K., Glaser, S., Deutsch, D. G. & Yazulla, S. (2000) Retinal cannabinoids: Comparative distribution of 3H-anadamide uptake and fatty acid amide hydrolase immunoreactivity in goldfish retina. Investigative Ophthalmology & Visual Science (Suppl.) 41, S296.Google Scholar
  110. Studholme, K. M. & Yazulla, S. (1997) 3H-adenosine uptake selectively labels rod horizontal cells in goldfish retina. Visual Neuroscience 14, 207–212.Google Scholar
  111. Su, Y. Y. T., Fry, K. R., Lam, D. M. K. & Watt, C. B. (1986) Enkephalin in the goldfish retina. Cellular and Molecular Neurobiology 6, 331–348.Google Scholar
  112. Su, Y. Y. T., Wu, J.-Y. & Lam, D. M. K. (1979) Purification of L-glutamic acid decarboxylase from catfish brain. Journal of Neurochemistry 33, 169–179.Google Scholar
  113. Subhedar, N., Cerda, J. & Wallace, R. A. (1996) Neuropeptide Y in the forebrain and retina of the killifish, Fundulus heteroclitus. Cell and Tissue Research 283, 313–323.Google Scholar
  114. Suzuki, S. & Kaneko, A. (1990) Identification of bipolar cell subtypes by protein kinase C-like immunoreactivity in the goldfish retina. Visual Neuroscience 5, 223–230.Google Scholar
  115. Teranishi, T., Negishi, K., Hidaka, S. & Naka, K. (1987) Dendritic morphology of indoleamine cells revealed by intracellular injection of LuciferYellow in fixed carp retina. Neuroscience 22, 323–329.Google Scholar
  116. Tornqvist, K. & Ehinger, B. (1983) Glucagon immunoreactive neurons in the retina of different species. Graefes Archive for Clinical & Experimental Ophthalmology 220, 1–5.Google Scholar
  117. Triller, A., Cluzeaud, F. & Korn, H. (1987) Gamma-aminobutyric acid-containing terminals can be apposed to glycine receptors at central synapses. Journal of Cell Biology 104, 947–956.Google Scholar
  118. Tumosa, N., Eckstein, F. & Stell, W. K. (1984) Immunocytochemical localization of putative cholinergic neurons in the goldfish retina. Neuroscience Letters 48, 255–259.Google Scholar
  119. Tumosa, N. & Stell, W. K. (1986) Choline acetyltransferase immunoreactivity suggests that ganglion cells in the goldfish retina are not cholinergic. Journal of Comparative Neurology 244, 267–275.Google Scholar
  120. Vandenbranden, C. A. V., Kamphuis, W., Cardozo, B. N. & Kamermans, M. (2000b) Expression and localization of ionotropic glutamate receptor subunits in the goldfish retina-an in situ hybridization and immunocytochemistry study. Journal of Neurocytology 29, 729–742.Google Scholar
  121. Vandenbranden, C. A. V., Yazulla, S., Studholme, K. M., Kamphuis, W. & Kamermans, M. (2000a) Immunocytochemical localization of the glutamate transporter GLT-1 in goldfish (Carassius auratus) retina. Journal of Comparative Neurology 423, 440–451.Google Scholar
  122. Van Haesendonck, E., Marc, R. E. & Missotten, L. (1993) New aspects of dopaminergic interplexiform cell organization in the goldfish retina. Journal of Comparative Neurology 333, 503–518.Google Scholar
  123. Vardi, N., Masarachia, P. & Sterling, P. (1992) Immunoreactivity to GABAA receptor in the outer plexiform layer of the cat retina. Journal of Comparative Neurology 320, 394–397.Google Scholar
  124. Vaughan, D. K. & Lasater, E. M. (1990) Glial and neuronal markers in bass retinal horizontal and Müller cells. Brain Research 537, 131–140.Google Scholar
  125. Vitanova, L., Kupenova, P., Haverkamp, S., Popova, E., Mitova, L. & WÄssle, H. (2001) Immunocytochemical and electrophysiological characterization of GABA receptors in the frog and turtle retina. Vision Research 41, 691–704.Google Scholar
  126. Vitorica, J., Park, D., Chin, G. & De Blas, A. L. (1988) Monoclonal antibodies and conventional antisera to the GABAA receptor/benzodiazepine receptor/ Cl-channel complex. Journal of Neuroscience 8, 615–622.Google Scholar
  127. Wagner, H.-J. & Wagner, E. (1988) Amacrine cells of a teleost fish, the roach (Rutilus rutilis): A Golgi study on differentiation and layering. Philosophical Transactions of the Royal Society of London, B 321, 263–324.Google Scholar
  128. Wagner, H.-J. & Zeutzius, I. (1987) Amacrine cells with neurotensin-and somatostatin-like immunoreactivity in three species of teleosts with different colour vision. Cell and Tissue Research 248, 663–673.Google Scholar
  129. Watling, K. J. & Dowling, J. E. (1983) Effects of vasoactive intestinal peptide and other peptides on cyclic AMPaccumulation in intact pieces and isolated horizontal cells of the teleost retina. Journal of Neurochemistry 41, 1205–1213.Google Scholar
  130. Wenthold, R. J., Zemple, J., Parakkal, M. A., Reeks, K. A. & Altschuler, R. A. (1986) Immunocytochemical localization of GABA in the cochlear nucleus of the guinea pig. Brain Research 380, 7–18.Google Scholar
  131. Yamada, T., Marshak, D., Basinger, S., Walsh, J., Morley, J. & Stell, W. K. (1980) Somatostatinlike immunoreactivity in the retina. Proceedings of the National Academy of Science of the USA 3, 1691–1695.Google Scholar
  132. Yazulla, S. (1986) GABAergic mechanisms in the retina. Progress in Retinal Research 5, 1–52.Google Scholar
  133. Yazulla, S. (1991) The mismatch problem for GABAergic amacrine cells in goldfish retina: Resolution and other issues. Neurochemical Research 16, 327–339.Google Scholar
  134. Yazulla, S., Mosinger, J. & Zucker, C. (1984) Two types of pyriformAbamacrine cells in the goldfish retina: An EM analysis of 3H-GABA uptake and somatostatinlike immunoreactivity. Brain Research 321, 352–356.Google Scholar
  135. Yazulla, S. & Studholme, K. M. (1991a) Glycinereceptor immunoreactivity in retinal bipolar cells is postsynaptic to glycinergic and GABAergic amacrine cell synapses. Journal of Comparative Neurology 310, 11–20.Google Scholar
  136. Yazulla, S. & Studholme, K. M. (1991b) Glycinergic interplexiform cells make synaptic contact with amacrine cell bodies in goldfish retina. Journal of Comparative Neurology 310, 1–10.Google Scholar
  137. Yazulla, S. & Studholme, K. M. (1995) Volume transmission of dopamine may modulate light adaptive plasticity of horizontal cell dendrites in the recovery phase following dopamine depletion in goldfish retina. Visual Neuroscience 12, 827–836.Google Scholar
  138. Yazulla, S. & Studholme, K. M. (1997) Differential reinnervation of retinal bipolar cell dendrites and axon terminals by dopamine interplexiform cells following dopamine depletion with 6-OHDA. Journal of Comparative Neurology 382, 535–545.Google Scholar
  139. Yazulla, S. & Studholme, K. M. (1998) Differential distribution of Shaker-like and Shab-like K+-channel subunits in goldfish retina and retinal bipolar cells. Journal of Comparative Neurology 396, 131–140.Google Scholar
  140. Yazulla, S. & Studholme, K. M. (1999) Colocalization of Shaker A-type K+channel (Kv1.4) and AMPA-glutamate receptor (GluR4) immunoreactivities to dendrites of OFF bipolar cells of goldfish retina. Journal of Neurocytology 28, 63–73.Google Scholar
  141. Yazulla, S., Studholme, K. M., Fan, S. F. & Mora-Ferrer, C. (2001) Neuromodulation of voltage-dependent K+ channels in bipolar cells: Immunocytochemical and electrophysiological studies. In Concepts and Challenges in Retinal Biology: A Tribute to John E. Dowling (edited by Kolb, H., Ripps, H. & Wu, S.) pp. 201–214. Amsterdam: Elsevier.Google Scholar
  142. Yazulla, S., Studholme, K. M., Mcintosh, H. H. & Deutsch, D. G. (1999) Immunocytochemical localization of cannabinoid CB1 receptor and fatty acid amide hydrolase in rat retina. Journal of Comparative Neurology 415, 80–90.Google Scholar
  143. Yazulla, S., Studholme, K. M., Mcintosh, H. H. & Fan, S. F. (2000) Cannabinoid receptors on goldfish retinal bipolar cells: Electron-microscope immunocytochemistry and whole-cell recordings. Visual Neuroscience 17, 391–401.Google Scholar
  144. Yazulla, S., Studholme, K. M. & Pinto, L. H. (1997) Differences in the retinal GABA system among control, spastic mutant and retinal degeneration mutant mice. Vision Research 37, 3471–3482.Google Scholar
  145. Yazulla, S., Studholme, K. M., Vitorica, J. & De Blas, A. L. (1989) Immunocytochemical localization of GABAA receptors in goldfish and chicken retinas. Journal of Comparative Neurology 280, 15–26.Google Scholar
  146. Yazulla, S., Studholme, K. M. & Wu, J.-Y. (1986) Comparative distribution of 3H-GABA uptake and GAD immunoreactivity in goldfish retinal amacrine cells: A double-label analysis. Journal of Comparative Neurology 244, 149–162.Google Scholar
  147. Yazulla, S., Studholme, K. M. & Zucker, C. L. (1985) Synaptic organization of substance P-like immunoreactive amacrine cells in goldfish retina. Journal of Comparative Neurology 231, 232–238.Google Scholar
  148. Yazulla, S. & Zucker, C. L. (1988) Synaptic organization of dopaminergic interplexiform cells in the goldfish retina. Visual Neuroscience 1, 13–30.Google Scholar
  149. Yoshida, K., Watanabe, D., Ishikane, H., Tachibana, M., Pastan, I. & Nakanishi, S. (2001) A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement. Neuron 30, 771–780.Google Scholar
  150. Young, L. H. Y. & Dowling, J. E. (1989) Localization of cyclic adenosine monophosphate in the teleost retina: Effects of dopamine and prolonged darkness. Brain Research 504, 57–63.Google Scholar
  151. Zenisek, D., Henry, D., Studholme, K. M., Yazulla, S. & Matthews, G. (2001) Voltagedependent sodium channels expressed in nonspiking retinal bipolar cells. Journal of Neuroscience 21, 4543–4550.Google Scholar
  152. Zucker, C., Yazulla, S. & Wu, J. Y. (1984) Noncorrespondence of 3H-GABA uptake and GAD localization in goldfish amacrine cells. Brain Research 298, 154–158.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Stephen Yazulla
  • Keith M. Studholme

There are no affiliations available

Personalised recommendations