Advertisement

Hydrobiologia

, Volume 471, Issue 1–3, pp 101–110 | Cite as

Age, growth and radiometric age validation of a deep-sea, habitat-forming gorgonian (Primnoa resedaeformis) from the Gulf of Alaska

  • Allen H. Andrews
  • Erik E. Cordes
  • Melissa M. Mahoney
  • Kristen Munk
  • Kenneth H. Coale
  • Gregor M. Cailliet
  • Jonathan Heifetz
Article

Abstract

Sustainable fisheries require (1) viable stock populations with appropriate harvest limits and (2) appropriate habitat for fish to survive, forage, seek refuge, grow and reproduce. Some deep-water habitats, such as those formed by deep-water stands of coral, may be vulnerable to fishing disturbance. The rate at which habitat can be restored is a critical aspect of fishery management. The purpose of this study was to characterize growth rates for a habitat-forming deep-sea coral. Two nearly complete colonies of red tree coral (Primnoa resedaeformis) collected from waters off southeast Alaska were used for an analysis of age and growth characteristics. CAT scans revealed that colonies consisted of multiple settlement events, where older basal structures provided for settlement of new colonies. The decay of 210Pb over the length of the colony was used to validate age estimates from growth ring counts. Age estimates were over 100 yr for sections near the heavily calcified base. Based on validated growth ring counts, growth of red tree coral ranged from 1.60 to 2.32 cm per year in height and was approximately 0.36 mm per year in diameter. These growth rates suggest that the fishery habitat created by red tree coral is extremely vulnerable to bottom fishing activities and may take over 100 years to recover.

deep-sea coral radiometric age validation gorgonian Primnoa resedaeformis biogenic habitat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbiati, M., G. Buffoni, G. Di Cola & G. Santangelo, 1991. Red coral population dynamics: stability analysis and numerical simulation of time evolution of perturbed states. In: Terrestrial and Aquatic Ecosystems: Perturbation and Recovery. Ellis Horwood Series in Environmental Management, Science, and Technology. New York: 219–228.Google Scholar
  2. Adkins, J. F., H. Cheng, E. A. Boyle, E. R. M. Druffel & R. L. Edwards, 1998. Deep-sea coral evidence for rapid ventilation of the deep north Atlantic 15 400 years ago. Science 280: 725–728.Google Scholar
  3. Andrews, A. H., G. M. Cailliet & K. H. Coale, 1999a. Age and growth of the Pacific grenadier (Coryphaenoides acrolepis) with age estimate validation using an improved radiometric ageing technique. Can. J. Fish. Aquat. Sci. 56: 1339–1350.Google Scholar
  4. Andrews, A. H., K. H. Coale, J. L. Nowicki, C. Lundstrom, Z. Palacz, E. J. Burton & G. M. Cailliet, 1999b. Application of an ion-exchange separation technique and thermal ionization mass spectrometry to 226Ra determination in otoliths for radiometric age determination of long-lived fishes. Can. J. Fish. Aquat. Sci. 56: 1329–1338.Google Scholar
  5. Appleby, P. G. & F. Oldfield, 1992. Application of lead-210 to sedimentation studies. In: Ivanovich, M. & R. S. Harmon (eds), Uranium-series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences. Clarendon Press, Oxford: 731–778.Google Scholar
  6. Beamish, R. J. & D. A. Fournier, 1981. A method for comparing the precision of a set of age determinations. Can. J. Fish. aquat. Sci. 38: 982–983.Google Scholar
  7. Bloeser, J. A., 1999. Diminishing returns: the status of west coast Rockfish. Pacific Marine Conservation Council. P.O. Box 59, Astoria OR 97103: 94 pp.Google Scholar
  8. Brazeau, D. A. and H. R. Lasker, 1992. Growth rates and growth strategy in a colonial marine invertebrate, the Caribbean octocoral Briareum asbestinum. Biol. Bull. 183: 269–277.Google Scholar
  9. Cimberg, R. L., T. Gerrodette and K. Muzik, 1981. Habitat requirements and expected distribution of Alaska coral. Final Report, Research Unit 601, VTN Oregon, Inc. Report prepared for Office of Marine Pollution Assessment, Alaska Office.Google Scholar
  10. Chang, W. Y. B., 1982. A statistical method for evaluating the reproducibility of age determination. Can. J. Fish. aquat. Sci. 39: 1208–1210.Google Scholar
  11. Chilton, D. E. & R. J. Beamish, 1982. Age determination methods for fishes studied by the groundfish program at the Pacific biological station. Can. Spec. Publ. Fish. Aquat. Sci. No. 60.Google Scholar
  12. Dodge, R. E. & J. Thomson, 1974. The natural radiochemical and growth records in contemporary hermatypic corals from the Atlantic and Caribbean. Earth Planet. Sci. Lett. 23: 313–322.Google Scholar
  13. Druffel, E. R. M., L. L. King, R. A. Belastock & K. O. Buesseler, 1990. Growth rate of a deep-sea coral using 210Pb and other isotopes. Geochim. Cosmochim. Acta. 54: 1493–1500.Google Scholar
  14. Druffel, E. R. M., S. Griffin, A. Witter, E. Nelson, J. Southon, M. Kashgarian & J. Vogel, 1995. Gerardia: bristlecone pine of the deep-sea? Geochim. Cosmochim. Acta. 59: 5031–5036.Google Scholar
  15. Edwards, R. L., J. W. Beck, G. S. Burr, D. J. Donahue, J. M. A. Chappell, A. L. Bloom, E. R.M. Druffel & F.W. Taylor, 1993. A large atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science 260: 962–968.Google Scholar
  16. Flynn, W. W., 1968. The determination of low levels of polonium-210 in environmental materials. Anal. Chim. Acta 43: 221–227.Google Scholar
  17. Griffin, S. & E. R. M. Druffel, 1989. Sources of carbon to deep-sea coral skeletons. Radiocarbon. 31: 533–542.Google Scholar
  18. Grigg, R. W., 1974. Growth rings: annual periodicity in two gorgonian corals. Ecology 55: 876–881.Google Scholar
  19. Grigg, R. W., 1976. Fishery management of precious and stony corals in Hawaii. Sea Grant Technical Report. UNIHI-Seagrant-TR-77-03. HIMB Contribution No. 490: 48 pp.Google Scholar
  20. Goh, N. K. C. & L. M. Chou. 1995. Growth of five species of gorgonians (sub-class Octocorallia) in the sedimented waters of Singapore. Mar. Ecol. 16(4): 337–346.Google Scholar
  21. Heezen, B. C. & C. D. Hollister, 1971. Face of the deep. Oxford Press, New York: 659 pp.Google Scholar
  22. Heifetz, J., 2002. Coral in Alaska: distribution, abundance, and species associations. Hydrobiologia. 471: 19–27.Google Scholar
  23. Hixson, S. J., 1915. Some Alcyonaria and a Stylaster from the West Coast of North America. Proc. Zool. Soc. Lond. 37: 541–557, 1 plate.Google Scholar
  24. Kim, K. & H. R. Lasker, 1997. Flow-mediated resource competition in the suspension feeding gorgonian Plexaura homomalla (Esper). J. exp. mar. Biol. Ecol. 215(1): 49–64.Google Scholar
  25. Kinoshita, K., 1908. Primnoidae von Japan. Journ. Coll. Sci. Univ. Tokyo. 23(12): 1–74, 6 plates.Google Scholar
  26. Krieger, K. J., 1993. Distribution and abundance of rockfish determined from a submersible and by bottom trawling. Fish. Bull. 91: 87–96.Google Scholar
  27. Krieger, K., 1998. Primnoa spp. observed inside and outside a bottom-trawled path from a submersible. Abstract: 10th Western Groundfish Conference, Asilomar Conference Center, Pacific Grove, California, U.S.A. 1–5 February 1998.Google Scholar
  28. Krieger, K. J., 2002. Coral (Primnoa) impacted by fishing gear in the Gulf of Alaska. In Willison, J. H. M., J. Hall, S. E. Gass, E. L. R. Kenchington, P. Doherty & M. Butler (eds), Proceedings of the First International Symposium on Deep Sea Corals. Ecology Action Center, Halifax, Canada: in press.Google Scholar
  29. Krieger, K. J. & B. L. Wing, 2002. Megafauna associations with deepwater corals (Primnoa spp.) in the Gulf of Alaska. Hydrobiologia 471: 83–90.Google Scholar
  30. Marshall, N. B., 1979. Deep-sea Biology: Developments and Perspectives. Garland STPM Press, New York: 566 pp.Google Scholar
  31. Mistri, M., 1995. Gross morphometric relationships and growth in the Mediterranean gorgonian Paramuricea clavata. Boll. Zool. 62: 5–8.Google Scholar
  32. Mistri, M. & V. U. Ceccherelli, 1994. Growth and secondary production of the Mediterranean gorgonian Paramuricea clavata. Mar. Ecol. Prog. Ser. 103: 291–296.Google Scholar
  33. Mitchell, N. D., M. R. Dardeau & W. W. Schroeder, 1993. Colony morphology, age structure, and relative growth of two gorgonian corals, Leptogorgia hebes (Verrill) and Leptogorgia virgulata (Lamarck), from the northern Gilf of Mexico. Coral Reefs. 12: 65–70.Google Scholar
  34. Mortensen, P. B., M. Hovland, T. Brattegard & R. Farestveit, 1995. Deep water bioherms of the Scleractinian coral Lophelia pertusa (L.) at 64° N on the Norwegian Shelf: structure and associated megafauna. Sarsia 80: 145–158.Google Scholar
  35. Mortensen, P. B. & H. T. Rapp, 1998. Oxygen and carbon isotope ratios related to growth line patterns in skeletons of Lophelia pertusa (Anthozoa, Scleractinia): implications for determination of linear extension rates. Sarsia 83(5): 433–446.Google Scholar
  36. O'Connell, V. M. & F. C. Funk, 1986. Age and growth of yelloweye rockfish (Sebastes ruberrimus) landed in southeastern Alaska. In: Proc. Int. Rockfish Symp. Oct. 1986, Anchorage, Alaska. Alaska Sea Grant Report No. 87-2: 171–196.Google Scholar
  37. Risk, M. J., D. E. McAllister & L. Behnken, 1998. Conservation of cold-and warm-water seafans: threatened ancient gorgonian groves. Sea Wind. 12(1): 2–21.Google Scholar
  38. Risk, M. J., J. M. Heikoop, M. G. Snow & R. Beukens, 2002. Lifespans and growth patterns of two deep-sea corals: Primnoa resedaeformis and Desmophyllum cristigalli. Hydrobiologia. 471: 125–131.Google Scholar
  39. Shen, G. T., E. A. Boyle & D.W. Lea, 1987. Cadmium in corals as a tracer of historical upwelling and industrial fallout. Nature 328: 794–796.Google Scholar
  40. Velimirov, B., 1975. Wachstum und altersbestimmung der gorgonie Eunicella cavolinii. Oecologia (Berl.) 19: 259–272.Google Scholar
  41. Weinbauer, M. G. & B. Velimirov, 1996. Relative habitat suitablility and stability of the Mediterranean gorgonian coral Eunicella cavolini (Coelenterata: Octocorallia). Bull. mar. Sci. 58(3): 786–791.Google Scholar
  42. Witherell, D. & C. Coon, 2002. Protecting gorgonian corals from fishing impacts. In Willison, J. H. M., J. Hall, S. E. Gass, E. L. R. Kenchington, P. Doherty & M. Butler (eds), Proceedings of the First International Symposium on Deep Sea Corals. Ecology Action Center, Halifax, Canada: in press.Google Scholar
  43. West, J.M., C. D. Harvell & A. M. Walls, 1993. Morphological plasticity in a gorgonian coral (Briareum asbestinum) over a depth cline. Mar. Ecol. Prog. Ser. 94: 61–69.Google Scholar
  44. Yoshioka, P.M. & B. B. Yoshioka, 1991 A comparison of the survivorship and growth of shallow-water gorgonian species of Puerto Rico. Mar. Ecol. Prog. Ser. 69: 253–260.Google Scholar
  45. Yoshioka, P. M., 1996. Variable recruitment and its effects on the population and community structure of shallow-water gorgonians. Bull. mar. Sci. 59(2): 433–443.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Allen H. Andrews
    • 1
  • Erik E. Cordes
    • 1
  • Melissa M. Mahoney
    • 1
  • Kristen Munk
    • 2
  • Kenneth H. Coale
    • 1
  • Gregor M. Cailliet
    • 1
  • Jonathan Heifetz
    • 3
  1. 1.Moss Landing Marine LaboratoriesMoss LandingU.S.A.
  2. 2.Alaska Department of Fish and GameCWT and Otolith LabJuneauU.S.A
  3. 3.Auke Bay Laboratory, NMFS, NOAAJuneauU.S.A

Personalised recommendations