Studia Logica

, Volume 71, Issue 2, pp 227–245 | Cite as

Kripke Semantics, Undecidability and Standard Completeness for Esteva and Godo's Logic MTL∀

  • Franco Montagna
  • Hiroakira Ono
Article

Abstract

The present paper deals with the predicate version MTL∀ of the logic MTL by Esteva and Godo. We introduce a Kripke semantics for it, along the lines of Ono's Kripke semantics for the predicate version of FLew (cf. [O85]), and we prove a completeness theorem. Then we prove that every predicate logic between MTL∀ and classical predicate logic is undecidable. Finally, we prove that MTL∀ is complete with respect to the standard semantics, i.e., with respect to Kripke frames on the real interval [0,1], or equivalently, with respect to MTL-algebras whose lattice reduct is [0,1] with the usual order.

many-valued logics logics without contraction Kripke semantics left-continuous t-norms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [CEGT99]
    R. Cignoli, F. Esteva, L. Godo and A. Torrens, 'Basic fuzzy logic is the logic of continuous t-norms and their residua', Soft Computing 4 (2000) 106-112.Google Scholar
  2. [CMO00]
    R. Cignoli, D. Mundici and I. M. L. D'Ottaviano, Algebraic Foundations of Many-Valued Reasoning, Kluwer 2000.Google Scholar
  3. [D88]
    K. DoŠen, 'Sequent systems and groupoid models I', Studia Logica XLVII (1988) 353-385.Google Scholar
  4. [D89]
    K. DoŠen, 'Sequent systems and groupoid models II', Studia Logica XLVIII (1989) 41-65.Google Scholar
  5. [EG00]
    F. Esteva and L. Godo, 'Monoidal t-norm based logic: towards a logic for left-continuous t-norms', Fuzzy Sets and Systems 124 (2001), 271-288.Google Scholar
  6. [EGGM02]
    F. Esteva, L. Godo, J. Gispert and F. Montagna, 'On the standard and rational completeness of some axiomatic extensions of the monoidal t-norm logic', Studia Logica, this volume, 393-420.Google Scholar
  7. [H98]
    P. HÁjek, Metamathematics of Fuzzy Logic, Kluwer, 1998.Google Scholar
  8. [H01]
    P. HÁjek, 'Fuzzy logic and arithmetical hierarchy III', Studia Logica 68,1 (2001), 129-142.Google Scholar
  9. [JM00]
    S. Jenei and F. Montagna, 'A proof of standard completeness for Esteva's and Godo's logic MTL', Studia Logica 70,2 (2002), 183-192.Google Scholar
  10. [KO91]
    E. Kiriyama and H. Ono, 'The contraction rule and decision problems for logics without structural rules', Studia Logica L, 2 (1991), 299-319.Google Scholar
  11. [KMP00]
    E. P. Klement, R. Mesiar and E. Pap, Triangular Norms, Kluwer Academic Publishers, Dordrecht (2000).Google Scholar
  12. [K86]
    Y. Komori, 'Pedicate logics without the structure rules', Studia Logica 45 (1986), 393-404.Google Scholar
  13. [L58]
    J. Lambek, 'The mathematics of sentence structure', American Mathematical Monthly 12 (1958), 166-178.Google Scholar
  14. [M01]
    F. Montagna, 'Three complexity problems in predicate fuzzy logic', Studia Logica 68,1 (2001), 143-152.Google Scholar
  15. [O85]
    H. Ono, 'Semantical analysis of predicate logics without the contraction rule', Studia Logica 44,2 (1985), 187-196.Google Scholar
  16. [O90]
    H. Ono, 'Structural rules and a logical hierarchy', in: Mathematical Logic, Proceedings of the Summer School and Conference on Mathematical Logic, Heyting'88, P.P. Petkov (ed.), Plenum Press, 1990, pp. 95-104.Google Scholar
  17. [O93]
    H. Ono, 'Semantics for substructural logics', in: Substructural Logics, eds. by K. Došen and P. Schroeder-Heister, Oxford University Press, 1993, pp. 259-291.Google Scholar
  18. [O00]
    H. Ono, 'Logics without the contraction rule and residuated lattices I', Festschrift on the occasion of R. K. Meyer's 65th birthday (forthcoming).Google Scholar
  19. [OK85]
    H. Ono and Y. Komori, 'Logics without the contraction rule', Journal of Symbolic Logic 50 (1985), 169-201.Google Scholar
  20. [R81]
    M. E. Ragaz, Arithmetische Klassification von Formelnmenge der unendlichwertigen Logik, ETH Zürich, (1981) Thesis.Google Scholar
  21. [TV88]
    A. S. Troelstra and D. van Dalen, Constructivism in Mathematics. An Introduction vol.II, Studies in Logic and the Foundations of Mathematics, vol. 123, North-Holland, 1988.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Franco Montagna
    • 1
  • Hiroakira Ono
    • 2
  1. 1.Department of MathematicsUniversity of SienaSienaItaly
  2. 2.Japan Advanced Institute of Science and TechnologyTatsunokuchi, IshikawaJapan

Personalised recommendations