Pharmaceutical Research

, Volume 13, Issue 11, pp 1686–1692 | Cite as

Chitosans as Absorption Enhancers for Poorly Absorbable Drugs. 1: Influence of Molecular Weight and Degree of Acetylation on Drug Transport Across Human Intestinal Epithelial (Caco-2) Cells

  • Nicolaas G. M. Schipper
  • Kjell M. Vårum
  • Per Artursson
Article

Abstract

Purpose. Chitosan has recently been demonstrated to effectively enhance the absorption of hydrophilic drugs such as peptides and proteins across nasal and intestinal epithelia (1–3). In this study, the effect of the chemical composition and molecular weight of chitosans on epithelial permeability and toxicity was investigated using monolayers of human intestinal epithelial Caco-2 cells as a model epithelium.

Methods. Eight chitosans varying in degree of acetylation (DA) and molecular weight were studied. The incompletely absorbed hydrophilic marker molecule 14C-mannitol was used as a model drug to assess absorption enhancement. Changes in intracellular dehydrogenase activity and cellular morphology were used to assess toxicity.

Results. Chitosans with a low DA (1 and 15%) were active as absorption enhancers at low and high molecular weights. However, these chitosans displayed a clear dose-dependent toxicity. Chitosans with DAs of 35 and 49% enhanced the transport of 14C-mannitol at high molecular weights only, with low toxicity. One chitosan (DA = 35%; MW = 170kD) was found to have especially advantageous properties such as an early onset of action, very low toxicity, and a flat dose-absorption enhancement response relationship.

Conclusions. The structural features of chitosans determining absorption enhancement are not correlated with those determining toxicity, which makes it possible to select chitosans with maximal effect on absorption and minimal toxicity.

mucosal permeability oral absorption cell culture structure-activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    L. Illum, N. F. Farraj, and S. S. Davis. Pharm. Res. 11:1186–1189 (1994).Google Scholar
  2. 2.
    C. O. Rentel, C. M. Lehr, J. A. Bouwstra, H. L. Luessen, and H. E. Junginger. Proceed. Intern. symp. control. Rel. Bioact. Mater. 20:446–447 (1993).Google Scholar
  3. 3.
    P. Artursson, T. Lindmark, S. S. Davis, and L. Illum. Pharm. Res. 11:1358–1361 (1994).Google Scholar
  4. 4.
    M. J. Jackson. In L. R. Johnson (ed.), Physiology of the Gastrointestinal Tract. Second edition, Raven Press, New York, 1987, pp. 1597–1621.Google Scholar
  5. 5.
    J. L. Madara and J. S. Trier. In L. R. Johnson (ed.), Physiology of the Gastrointestinal Tract. Second edition, Raven Press, New York, 1987, pp. 1251–1266.Google Scholar
  6. 6.
    P. L. Smith, D. A. Wall, C. H. Gochoco, and G. Wilson. Adv. Drug Del. Rev. 8:253–290 (1992).Google Scholar
  7. 7.
    E. S. Swenson and W. J. Curatolo. Adv. Drug Del. Rev. 8:39–92 (1992).Google Scholar
  8. 8.
    J. H. Hochman and P. Artursson. J. Control. Rel. 29:253–267 (1994).Google Scholar
  9. 9.
    K. M. Vårum, M. W. Anthonsen, H. Grasdalen, and O. Smidsrød. Carbohydr. Res. 211:17–23 (1991).Google Scholar
  10. 10.
    K. M. Vårum, M. W. Anthonsen, H. Grasdalen, and O. Smidsrød. Carbohydr. Res. 217:19–27 (1991).Google Scholar
  11. 11.
    M. W. Anthonsen, K. M. Vårum, and O. Smidsrød. Carbohydr. Polymers 22:193–201 (1993).Google Scholar
  12. 12.
    R. J. Nordtveit, K. M. Vårum, and O. Smidsrød. Carbohydr. Polymers 23:253–260 (1994).Google Scholar
  13. 13.
    A. Domard. Int. J. Biol. Macromol. 9:98–104 (1987).Google Scholar
  14. 14.
    M. W. Anthonsen and O. Smidsrød. Carbohydr. Polymers 26:303–305 (1995).Google Scholar
  15. 15.
    C. J. Brine, P. A. Sandford, and J. P. Zikakis. Advances in Chitin and Chitosan, Elsevier Applied Science, London, 1992.Google Scholar
  16. 16.
    S. W. Chang, J. Y. Westscott, J. E. Henson, and N. V. Voelkel. J. Appl. Physiol. 62:1932–1943 (1987).Google Scholar
  17. 17.
    H. M. Ekrami and W. C. Shen. J. Drug Target. 2:469–475 (1995).Google Scholar
  18. 18.
    C. M. Lehr, J. A. Bouwstra, E. H. Schacht, and H. E. Junginger. Int. J. Pharm. 78:43–48 (1992).Google Scholar
  19. 19.
    K. M. Vårum, M. W. Anthonsen, M. H. Ottøy, H. Grasdalen, and O. Smidsrød. In: C. J. Brine, P. A. Sandford, and J. P. Zikakis (eds.), Advances in Chitin and chitosan, Elsevier Applied Science, London, 1992, pp. 127–136.Google Scholar
  20. 20.
    P. Artursson. J. Pharm. Sci. 79:476–482 (1990).Google Scholar
  21. 21.
    K. Lappalainen, I. Jääskeläinen, K. Syrjänen, A. Urtti, and S. Syrjänen. Pharm. Res. 11:1127–1131 (1994).Google Scholar
  22. 22.
    E. K. Anderberg, C. Nyström, and P. Artursson. J. Pharm. Sci. 81:879–887 (1992).Google Scholar
  23. 23.
    A. G. DeBoer and D. D. Breimer. In A. G. DeBoer (ed.), Drug Absorption Enhancement: Concepts, Possibilities, Limitations and Trends, Harwood Academic Publishers, Chur, 1994, pp. 155–175.Google Scholar
  24. 24.
    E. S. Swenson, W. B. Milisen, and W. Curatolo. Pharm. Res. 11:1132–1142 (1994).Google Scholar
  25. 25.
    E. K. Anderberg and P. Artursson. J. Pharm. Sci. 82:392–398 (1993).Google Scholar
  26. 26.
    A. Santana, S. Hyslop, E. Antunes, M. Mariano, Y. S. Bakhle, and G. DeNucci. Agents Actions 39:104–110 (1993).Google Scholar
  27. 27.
    I. Westergren and B. B. Johansson. Acta Physiol. Scand. 149:99–104 (1993).Google Scholar
  28. 28.
    G. T. A. McEwan, M. A. Jepson, B. H. Hirst, and N. L. Simmons. Biochim. Biophys. Acta 1148:51–60 (1993).Google Scholar
  29. 29.
    C. J. Bentzel, M. Fromm, C. E. Palant, and U. Hegel. J. Membr. Biol. 95:9–20 (1987).Google Scholar
  30. 30.
    C. J. Tzan, J. R. Berg, and S. A. Lewis. Am. J. Physiol. 265 (Cell Physiol. 34):C1637–1647 (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Nicolaas G. M. Schipper
    • 1
  • Kjell M. Vårum
    • 2
  • Per Artursson
    • 1
  1. 1.Department of PharmaceuticsUppsala University, Biomedical CenterUppsalaSweden. To whom correspondence should be addressed
  2. 2.Norwegian Biopolymer Laboratory (NOBIPOL), Dept. of BiotechnologyThe Norwegian Institute of Technology (NTH), University of TrondheimTrondheimNorway

Personalised recommendations