Journal of Medical Systems

, Volume 26, Issue 5, pp 445–463 | Cite as

Decision Trees: An Overview and Their Use in Medicine

  • Vili Podgorelec
  • Peter Kokol
  • Bruno Stiglic
  • Ivan Rozman


In medical decision making (classification, diagnosing, etc.) there are many situations where decision must be made effectively and reliably. Conceptual simple decision making models with the possibility of automatic learning are the most appropriate for performing such tasks. Decision trees are a reliable and effective decision making technique that provide high classification accuracy with a simple representation of gathered knowledge and they have been used in different areas of medical decision making. In the paper we present the basic characteristics of decision trees and the successful alternatives to the traditional induction approach with the emphasis on existing and possible future applications in medicine.

decision trees classification decision making machine learning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Quinlan, J. R., C4.5: Programs for Machine Learning, Morgan Kaufmann, San Francisco, 1993.Google Scholar
  2. 2.
    Quinlan, J. R., Induction of decision trees. Mach. Learn. 1:81-106, 1986.Google Scholar
  3. 3.
    Quinlan, J. R., Simplifying decision trees, Int. J. Man-Mach. Stud. 27:221-234, 1987.Google Scholar
  4. 4.
    Shannon, C., and Weaver, W., The Mathematical Theory of Communication, University of Illinois Press, USA, 1949.Google Scholar
  5. 5.
    Breiman, L., Friedman, J. H., Olsen, R. A., and Stone, C. J., Classification and Regression Trees, Wadsworth, USA, 1984.Google Scholar
  6. 6.
    Paterson, A., and Niblett, T. B., ACLS Manual, Intelligent Terminals Ltd., Edinburgh, 1982.Google Scholar
  7. 7.
    Zorman, M., Podgorelec, V., Kokol, P., Peterson, M., and Lane, J., Decision tree's induction strategies evaluated on a hard real world problem. Proc. 13th IEEE Symp. Comp.-Based Med. Syst. (CBMS-2000) pp. 19-24, 2000.Google Scholar
  8. 8.
    Zorman, M., Hleb S., and Sprogar, M., Advanced tool for building decision trees MtDecit 2.0. Proc. Int. Conf. Artif. Intellig. (ICAI-99), 1999.Google Scholar
  9. 9.
    Tou, J. T., and Gonzalez, R. C., Pattern Recognition Principles, Addison-Wesley, Reading, MA, 1974.Google Scholar
  10. 10.
    Murthy, K. V. S., On Growing Better Decision Trees from Data, PhD dissertation, Johns Hopkins University, Baltimore, MD, 1997.Google Scholar
  11. 11.
    Neapolitan, R., and Naimipour, K., Foundations of Algorithms, D.C. Heath and Company, Lexington, MA, 1996.Google Scholar
  12. 12.
    Heath, D., Kasif, S., and Salzberg, S., k-DT: A multi-tree learning method. Proc. Second Int. Workshop Multistrategy Learn. pp. 138-149, 1993.Google Scholar
  13. 13.
    Heath, D., Kasif, S., and Salzberg, S., Learning oblique decision trees. Proc. Thirteenth Int. Joint Conf. Artif. Intellig. (IJCAI-93) pp. 1002-1007, 1993.Google Scholar
  14. 14.
    Rich, E., and Knight, K., Artificial Intelligence (2nd edn.), McGraw Hill, New York, 1991.Google Scholar
  15. 15.
    Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., Optimization by simulated annealing. Science 220:4598, 1983.Google Scholar
  16. 16.
    Utgoff, P. E., Incremental induction of decision trees. Mach. Learn. 4(2):161-186, 1989.Google Scholar
  17. 17.
    Crawford, S., Extensions to the CART algorithm. Int. J. Man-Mach. Stud. 31(2):197-217, 1989.Google Scholar
  18. 18.
    Dietterich, T. G., and Kong, E. B., Machine learning bias, statistical bias and statistical variance of decision tree algorithms. Technical Report, Oregon State University, 1995.Google Scholar
  19. 19.
    Ho, T. K., The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intellig. 20(8):832-844, 1998.Google Scholar
  20. 20.
    Podgorelec, V., and Kokol, P., Evolutionary decision forests-decision making with multiple evolutionary constructed decision trees, Problems in Applied Mathematics and Computational Intelligence, pp. 97-103, WSES Press, 2001.Google Scholar
  21. 21.
    Shlien, S., Multiple binary decision tree classifiers. Pattern Recogn. Lett. 23(7):757-763, 1992.Google Scholar
  22. 22.
    Utgoff, P. E., Perceptron trees: A case study in hybrid concept representations. Connect. Science 1:377-391, 1989.Google Scholar
  23. 23.
    Craven, M.W., and Shavlik, J.W., Extracting tree-structured representations of trained networks. In Advances in Neural Information Processing Systems, Vol. 8, MIT Press, Cambridge, MA, 1996.Google Scholar
  24. 24.
    Zorman, M., Kokol, P., and Podgorelec, V., Medical decision making supported by hybrid decision trees. Proc. ICSC Symp. Intellig. Syst. Appl. (ISA-2000) ICSC Academic Press, 2000.Google Scholar
  25. 25.
    Banerjee, A., Initializing neural networks using decision trees. Proc. Int. Workshop Comput. Learn. Nat. Learn. Syst. pp. 3-15, 1994.Google Scholar
  26. 26.
    Goldberg, D. E., Genetic algorithms in search, optimization, and machine learning, AddisonWesley, Reading, MA, 1989.Google Scholar
  27. 27.
    Nikolaev, N., and Slavov, V., Inductive genetic programming with decision trees. Intellig. Data Anal. Int. J. 2(1):31-44, 1998.Google Scholar
  28. 28.
    Podgorelec, V., and Kokol, P., Induction f medical decision trees with genetic algorithms. Proc. Int. ICSC Congr. Comput. Intellig. Methods Appl. (CIMA 1999) 1999.Google Scholar
  29. 29.
    Cantu-Paz, E., and Kamath, C., Using evolutionary algorithms to induce oblique decision trees. Proc. Genet. Evol. Comput. Conf. (GECCO-2000) pp. 1053-1060, 2000.Google Scholar
  30. 30.
    Podgorelec, V., and Kokol, P., Towards more optimal medical diagnosing with evolutionary algorithms. J. Med. Syst. 25(3):195-219, 2001.Google Scholar
  31. 31.
    Sprogar, M., Kokol, P., Hleb, S., Podgorelec, V., and Zorman, M., Vector decision trees. Intellig. Data Anal. 4(3/4):305-321, 2000.Google Scholar
  32. 32.
    Podgorelec, V., Intelligent Systems Design and Knowledge Discovery With Automatic Programming, PhD thesis, University of Maribor, Oct. 2001.Google Scholar
  33. 33.
    Cremilleux, B., and Robert, C., A theoretical framework for decision trees in uncertain domains: Application to medical data sets. In Lecture Notes in Artificial Intelligence, Vol. 1211, pp. 145-156, Springer-Verlag, 1997.Google Scholar
  34. 34.
    Kokol, P., Zorman, M., Stiglic, M. M., and Malcic, I., The limitations of decision trees and automatic learning in real world medical decision making. Proc. 9thWorld Congr. Med. Inform. (MEDINFO-98) Vol. 52, pp. 529-533, 1998.Google Scholar
  35. 35.
    Tsien, C. L., Fraser, H. S. F., Long, W. J., and Kennedy, R. L., Using classification tree and logistic regression methods to diagnose myocardial infarction. Proc. 9th World Congr. Med. Inform. (MEDINFO-98) Vol. 52, pp. 493-497, 1998.Google Scholar
  36. 36.
    Babic, S. H., Kokol, P., and Stiglic, M. M., Fuzzy decision trees in the support of breastfeeding. Proc. 13th IEEE Symp. Comp.-Based Med. Syst. (CBMS-2000) pp. 7-11, 2000.Google Scholar
  37. 37.
    Jones, J. K., The role of data mining technology in the identification of signals of possible adverse drug reactions: Value and limitations. Curr. Ther. Res.-Clin. Exp. 62(9):664-672, 2001.Google Scholar
  38. 38.
    Ohno-Machado, L., Lacson, R., and Massad, E., Decision trees and fuzzy logic: A comparison of models for the selection of measles vaccination strategies in Brazil. J. Am. Med. Inform. Assoc. (Suppl.):625-629, September 2000.Google Scholar
  39. 39.
    Dantchev, N., Therapeutic decision frees in psychiatry. Encephale-Revue De Psychiatrie Clinique Biologique Et Therapeutique 22(3):205-214, 1996.Google Scholar
  40. 40.
    Gambhir, S. S., Decision analysis in nuclear medicine. J. Nucl. Med. 40(9):1570-1581, 1999.Google Scholar
  41. 41.
    Tsien, C. L., Kohane, I. S., and McIntosh, N., Multiple signal integration by decision tree induction to detect artifacts in the neonatal intensive care unit. Artif. Intellig. Med. 19(3):189-202, 2000.Google Scholar
  42. 42.
    Bonner, G., Decision making for health care professionals: Use of decision trees within the community mental health setting. J. Adv. Nurs. 35:349-356, 2001.Google Scholar
  43. 43.
    Letourneau, S., and Jensen, L., Impact of a decision tree on chronic wound care. J. Wound Ostomy Continence Nurs. 25:240-247, 1998.Google Scholar
  44. 44.
    Sanders, G. D., Hagerty, C. G., Sonnenberg, F. A., Hlatky, M. A., and Owens, D. K., Distributed decision support using a web-based interface: Prevention of sudden cardiac death, Med. Decision Making 19(2):157-166, 2000.Google Scholar
  45. 45.
    Sims, C. J., Meyn, L., Caruana, R., Rao, R. B., Mitchell, T., and Krohn, M., Predicting cesarean delivery with decision tree models. Am. J. Obstet. Gynecol. 183:1198-1206, 2000.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Vili Podgorelec
    • 1
  • Peter Kokol
    • 1
  • Bruno Stiglic
    • 1
  • Ivan Rozman
    • 1
  1. 1.University of Maribor – FERIMariborSlovenia

Personalised recommendations